Language model benchmarks are standardized tests designed to evaluate the performance of language models on various natural language processing tasks. These tests are intended for comparing different models' capabilities in areas such as language understanding, generation, and reasoning.
Benchmarks generally consist of a dataset and corresponding evaluation metrics. The dataset provides text samples and annotations, while the metrics measure a model's performance on tasks like question answering, text classification, and machine translation. These benchmarks are developed and maintained by academic institutions, research organizations, and industry players to track progress in the field.
Generally, benchmarks are fully automated. This limits the questions that can be asked. For example, with mathematical questions, "proving a claim" would be difficult to automatically check, while "calculate an answer with a unique integer answer" would be automatically checkable. With programming tasks, the answer can generally be checked by running unit tests, with an upper limit on runtime.
The benchmark scores are of the following kinds:
The pass@n score can be estimated more accurately by making attempts, and use the unbiased estimator , where is the number of correct attempts. [2]