Luffa

Last updated

Luffa
Luffa aegyptica.jpg
Egyptian luffa with nearly mature fruit
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Cucurbitales
Family: Cucurbitaceae
Subfamily: Cucurbitoideae
Tribe: Sicyoeae
Genus: Luffa
Mill. [1]
Species [2]
Synonyms [2]

Luffa is a genus of tropical and subtropical vines in the pumpkin, squash and gourd family (Cucurbitaceae).

Contents

In everyday non-technical usage, the luffa, also spelled loofah [3] or less frequently loofa, [4] usually refers to the fruits of the species Luffa aegyptiaca and Luffa acutangula . It is cultivated and eaten as a vegetable, but must be harvested at a young stage of development to be edible. The vegetable is popular in India, China, Nepal, Bhutan, Bangladesh and Vietnam. [5] When the fruit is fully ripened, it is very fibrous. The fully developed fruit is the source of the loofah scrubbing sponge.

Names

The name luffa was taken by European botanists in the 17th century from the Egyptian Arabic name لوفlūf. [1]

In North America it is sometimes known as "Chinese okra", [6] and in Spanish as estropajo. [7]

Uses

Fibers

A bathroom loofa sponge Loofah.jpg
A bathroom loofa sponge

The fruit section of L. aegyptiaca may be allowed to mature and used as a bath or kitchen sponge after being processed to remove everything except the network of xylem fibers. If the loofah is allowed to fully ripen and then dried on the vine, the flesh disappears, leaving only the fibrous skeleton and seeds, which can be easily shaken out. Marketed as luffa or loofah, the sponge is used as a body scrub in the shower.

In Paraguay, panels are made out of luffa combined with other vegetable matter and recycled plastic. These can be used to create furniture and construct houses. [8]

Food

Luffa is a very popular food item. There are various ways to prepare it including in soups or stir frys.

Indian subcontinent

Ridge gourd with mung bean made in a house in Vijayawada, Andhra Pradesh, India biirkaay pppu.jpg
Ridge gourd with mung bean made in a house in Vijayawada, Andhra Pradesh, India
Beerakaya pulusu curry ingredients Ridge gourd( beerakai ).jpg
Beerakaya pulusu curry ingredients

In Hindi-speaking North Indian states, it is called torai (तोरई), and cooked as vegetable. In eastern-UP it is also called nenua. But in central/Western India, specially in Madhya Pradesh, it is called gilki (गिल्की). Torai is reserved for ridge gourd and is less popular than gilki in central western India.

In Bhojpuri speaking regions it is called ghiura. Apart from the fruit of the vegetable, flowers are also used as a vegetable as chokha, tarua, pakoda, etc.

In Nepal and Nepali language speaking Indian states, it is called ghiraula (घिरौंला). It is a popular vegetable usually cooked with tomato and potatoes and served with rice.

In Gujarat it is known as turia or turya (તુરીયા) as well as ghissori or ghissora in the Kutchi language. It is a simple but very popular vegetable usually made with a plentiful tomato gravy and garnished with green chillies and fresh coriander. When cooked roti is shredded by hand and mixed into it, it is colloquially known as "rotli shaak ma bhuseli". Alternatively this dish is also eaten mixed with plain cooked rice.

In Bengali-speaking Bangladesh and the Indian state of West Bengal, it is known as dhudhul (ধুঁধুল) and a popular vegetable. It is eaten fried or cooked with shrimp, fish, or meat.

In Assam, it is called bhul (ভুল) and is cooked with sour fish curry along with taro . [9]

In Tamil Nadu, Luffa acutangula (ridged gourd) is called peerkangai (பீர்க்கங்காய்) and Luffa aegyptiaca / Luffa cylindrica (sponge gourd) is called nurai peerkankai (நுரை பீர்க்கங்காய்) and are used as vegetables to make peerkangai kootu , [10] poriyal , and thogayal . [11] Even the skin is used to make chutney.

In Karnataka's Malenadu (Western Ghats) it is known as tuppadahirekayi, which literally translates as "buttersquash", also known as hirekayi in Kannada. It grows naturally in this region and is consumed when it is still tender and green. It is used as a vegetable in curries, but also as a snack, bhajji, dipped in chickpea batter and deep fried. In Tulu language it is known as Peere and is used to prepare chutney and ajethna. [12]

In Telangana, it is called beerakaya. It is used in making Dal, Fry, Roti Pacchadi, and wet curry.

In Andhra Pradesh, it is called nethi beerakaya or beerakaya. And in Assam it is called jika (জিকা, Luffa acutangula) and bhula (ভোল, Luffa aegyptiaca). It is used as a vegetable in a curry, chutney and stir fry.

In Kerala, it is called peechinga; in the Palakkad area it is particularly called poththanga and used in while bathing. It is also used as a vegetable, cooked with dal or stir fried. Fully matured fruit is used as a natural scrub in rural Kerala. In some places such as Wayanad, it grows as a creeper on fences.

In Maharashtra, India, dodka (ridge gourd luffa) and ghosavala (smooth luffa) are common vegetables prepared with either crushed dried peanuts or with beans.

In Manipur, India, sebot is cooked with other ingredients like potato, dried fish, fermented fish and served. It is also steamed and consumed or crushed (ironba) with other ingredients and served with steamed rice (chaak). Fried ones (kaanghou) are also favorites for many. Sebot is also eaten as a green vegetable.

Other Asian cuisines

In Vietnamese cuisine, the gourd is called "mướp hương" and is a common ingredient in soups and stir-fried dishes.

In China and Taiwan (where it is called simplified Chinese :丝瓜; traditional Chinese :絲瓜; pinyin :sīguā, or in English, "silk melon"), Indonesia (where it is called oyong), and the Philippines (where it is called patola in Tagalog and kabatiti in Ilokano), in Timor-Leste it is also called "patola" or "batola" in Tetum and in Manipur, India, (where it is called sebot) the luffa is eaten as a green vegetable in various dishes.[ which? ]

In Japan it is called hechima (へちま) and is cultivated all over the country during summer. It is commonly used as a green vegetable in traditional dishes of the Ryukyu Islands (where it is called naabeeraa). In other regions it is also grown for uses other than food.

In Nepal it is called ghiraula and consumed as a vegetable at a young age. When it becomes ripe and dried, it is used as a body scrubbing material during bathing.

Western cuisines

Luffa is also known as "Chinese okra" in Canada and the U.S.

Other uses

In Japan, in regions other than the Ryukyu Islands and Kyushu, it is predominantly grown for use as a sponge or for applying soap, shampoo, and lotion. As with bitter melon, many people grow it outside building windows as a natural sunscreen in summer.[ citation needed ]

Role in food chain

Luffa species are used as food plants by the larvae of some Lepidoptera species, including Hypercompe albicornis and Zeugodacus tau . [13]

Mechanical properties

The luffa sponge is a biological cellular material. These materials often exhibit exceptional mechanical properties at low densities. While their mechanical performance tends to fall behind manmade materials, such as alloys, ceramics, plastics, and composites, as a structural material, they have long term sustainability for the natural environment. When compressed longitudinally, a luffa sponge is able to absorb comparable energy per unit mass as aluminum foam. [14] Luffa sponges are composed of a complex network of fiber bundles connected to form a 3-dimensional, highly-porous network. [15]

Definition of the parts of a luffa sponge and the relevant coordinate system for mechanical properties measurements Luffa sponge diagram.jpg
Definition of the parts of a luffa sponge and the relevant coordinate system for mechanical properties measurements

The hierarchical structure of luffa sponges results in mechanical properties that vary with the component of sponge tested. Specifically, the mechanical properties of fiber bundles differ from those of blocks from the bulk of the sponge, which differ from those of the cross sections of the entire sponge. [15]

Fiber-bundles

Uniaxial tensile tests of fiber bundles isolated from the inner surface provide insight this basic strut element of the luffa sponges. These fiber bundles vary in diameter from 0.3 to 0.5 mm. [15] Each fiber bundle has a low density core region not occupied by fibers. [16] The stress-strain response of the fiber bundles is nearly linear elastic all the way until fracture, suggesting the absence of work hardening. The slope of the linear region of the stress-strain curve, or Young’s modulus, is 236* MPa. The highest stress achieved before fracture, or ultimate tensile strength, is 103 MPa. The strain at which failure occurs, or failure strain, is small at only 5%. The mechanical properties of fiber bundles decrease dramatically when the size of the hollow region inside the bundle increases. Despite their low tensile strength, the fiber bundles have a high specific modulus of 2.07– 4.05 MPa⋅m3/kg, and their overall properties are improved when a high ratio of their cross sectional area is occupied by fibers, they are evenly distributed, and there is strong adhesion between fibers. [15] [16]

Bulk-sponge

Characteristic stress-strain curve of a luffa sponge in compression Stress strain of luffa sponge.jpg
Characteristic stress-strain curve of a luffa sponge in compression

Block samples (height: 12.69 ± 2.35mm, width: 11.30 ± 2.88mm, length: 13.10 ± 2.64mm) cut from the core region and hoop region of the luffa sponge exhibit different mechanical behaviors under compression depending on both the orientation they are loaded in as well as the location in the sponge they are sampled from. The hoop region consists of the section of sponge located around the outside between the inner and outer surfaces, while the core region is from the sponge center. Samples from both the hoop and core regions exhibited yielding when compressed in the longitudinal direction due to the buckling of fibers. With the highly aligned fibers from the inner surface removed from the hoop region block samples, this yield behavior disappears. In general, the inner surface fibers most significant impact the longitudinal properties of the luffa sponge column followed by the circumferential properties. There is no noticeable contribution to the radial properties. Additionally, the core region exhibits lower yield stress and energy absorption (as determined by the area under the stress-strain curve) compared to the hoop region due to its greater porosity. [15]

Overall, the stress-strain curves of block samples exhibit three stages of mechanical behavior common to porous materials. Namely, the samples follow linear elasticity for strains less than 10%, followed by a plateau for strains from 10% to 60%, and finally a stress increase associated with densification at strains greater than 60%. Segment samples created from cross sections of the entire luffa sponge (diameter: 92.51 ± 6.15mm, height: 19.76 ± 4.95mm) when tested in compression exhibit this same characteristic behavior. [15] The three stages can be described by the equations:

  1. Linear elasticity region: for
  2. Plateau region: for
  3. Densification region: for [17]

In the above equations, is the Young's modulus and the yield strength of the sponge material. These are chosen to best fit experimental data. The strain at the elastic limit, where the plateau region begins, is denoted as , while the strain at the onset of the densification region is . [17]

Here is the density of the bulk sponge is the density of its constituent, the fiber bundle. The constant D defines the strain at the onset of densification as well as the stress relationship in the densification region. It is determined by fitting experimental data. [17]

Dynamic loading

The mechanical properties of Luffa sponges change under different strain rates. Specifically, energy adsorption, compressive stress, and plateau stress (which is in the case of foam materials corresponds to the yield stress) are enhanced by increasing the strain rate. [15] [18] One explanation for this is that the luffa fibers undergo more axial deformation when dynamically loaded (high strain rates) than when quasi-statically loaded (low strain rates). [18]

Related Research Articles

<span class="mw-page-title-main">Composite material</span> Material made from a combination of two or more unlike substances

A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.

<span class="mw-page-title-main">Young's modulus</span> Mechanical property that measures stiffness of a solid material

Young's modulus is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress applied to the object and the resulting axial strain in the linear elastic region of the material.

In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimal cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve. The relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic. The linear relationship for a material is known as Young's modulus. Above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. The determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis.

<span class="mw-page-title-main">Stress–strain curve</span> Curve representing a materials response to applied forces

In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.

Dynamic mechanical analysis is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.

<span class="mw-page-title-main">Toughness</span> Material ability to absorb energy and plastically deform without fracturing

In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. Toughness requires a balance of strength and ductility.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

In physics, the elastic potential energy gained by a wire during elongation with a tensile (stretching) or compressive (contractile) force is called strain energy. For linearly elastic materials, strain energy is:

A Kelvin-Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales, but shows additional resistance to fast deformation. The model was developed independently by the British physicist Lord Kelvin in 1865 and by the German physicist Woldemar Voigt in 1890.

<span class="mw-page-title-main">Conjugate variables (thermodynamics)</span> Pair of values which express a thermodynamic systems internal energy

In thermodynamics, the internal energy of a system is expressed in terms of pairs of conjugate variables such as temperature and entropy, pressure and volume, or chemical potential and particle number. In fact, all thermodynamic potentials are expressed in terms of conjugate pairs. The product of two quantities that are conjugate has units of energy or sometimes power.

Dynamic modulus is the ratio of stress to strain under vibratory conditions. It is a property of viscoelastic materials.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 by James R. Rice, who showed that an energetic contour path integral was independent of the path around a crack.

In materials science the flow stress, typically denoted as Yf, is defined as the instantaneous value of stress required to continue plastically deforming a material - to keep it flowing. It is most commonly, though not exclusively, used in reference to metals. On a stress-strain curve, the flow stress can be found anywhere within the plastic regime; more explicitly, a flow stress can be found for any value of strain between and including yield point and excluding fracture : .

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

<i>Luffa aegyptiaca</i> Species of plant

Luffa aegyptiaca, the sponge gourd, Egyptian cucumber or Vietnamese luffa, is an annual species of vine cultivated for its fruit, native to South and Southeast Asia.

<i>Luffa acutangula</i> Species of flowering plant

Luffa acutangula is a cucurbitaceous vine that is commercially grown for its unripe fruits as a vegetable. Mature fruits are used as natural cleaning sponges. Its fruit slightly resembles a cucumber or zucchini with ridges. It is native to South Asia and has been naturalised in other regions. It is also grown as a houseplant in places with colder climates. English common names include angled luffa, Chinese okra, dish cloth gourd, ridged gourd, sponge gourd, vegetable gourd, strainer vine, ribbed loofah, silky gourd, silk gourd,

<span class="mw-page-title-main">Fiber-reinforced composite</span>

A fiber-reinforced composite (FRC) is a composite building material that consists of three components:

  1. the fibers as the discontinuous or dispersed phase,
  2. the matrix as the continuous phase, and
  3. the fine interphase region, also known as the interface.

In mechanical engineering, many terms are associated into pairs called duals. A dual of a relationship is formed by interchanging force (stress) and deformation (strain) in an expression.

<span class="mw-page-title-main">Flow plasticity theory</span>

Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.

References

  1. 1 2 The plant name "luffa" was introduced to Western botany nomenclature by the botanist Johann Vesling (died 1649), who visited Egypt in the late–1620s and described the plant under cultivation with artificial irrigation in Egypt. In 1706 the botanist Joseph Pitton de Tournefort introduced the formal botany genus name "Luffa". Tournefort referred to Veslingius's earlier description and reiterated that "Luffa Arabum" is a plant from Egypt in the cucumber family. In establishing the genus Luffa, Tournefort identified just one member species and called it "Luffa Arabum". His 1706 article includes detailed drawings of this species (which is now called Luffa aegyptiaca). The species is native to tropical Asia but has been under cultivation in Egypt since late medieval times. The botanist Peter Forsskål visited Egypt in the early–1760s and noted that it was called ليفlūf in Arabic. In the 18th century the botanist Linnaeus adopted the name luffa for this species but assigned it to the genus Momordica , and did not use a separate genus Luffa. More refs on Luffa in 18th century botanical nomenclature: "A commentary on Loureiro's "Flora Cochinchinensis" ", by E.D. Merrill, year 1935, in Transactions of American Philosophical Society volume 24 part 2, pp 377-378. Luffa @ ATILF Archived 2013-10-17 at the Wayback Machine and "Suite de l'Etablissement de Quelques Nouveaux Genres de Plantes", by J.P. de Tournefort (1706) in Mémoires de l'Academe Royale des Sciences année 1706.
  2. 1 2 "Luffa Mill". Plants of the World Online . Royal Botanic Gardens, Kew . Retrieved 26 October 2023.
  3. "loofah | Collins Dictionary".
  4. "loofa | Collins Dictionary".
  5. Christman, Steve (March 13, 2010). "Luffa aegyptiaca". Floridata.com. Archived from the original on August 1, 2013. Retrieved September 15, 2013.
  6. Turiano, John Bruno (2014-03-26). "What the Heck Is Chinese Okra? A Guide to the Vegetable". Westchester Magazine. Retrieved 2023-07-14.
  7. "Luffa aegyptiaca - ficha informativa". www.conabio.gob.mx. Retrieved 2023-07-14.
  8. Recyclable Homes; 2008 Rolex Awards for Enterprise. Archived 2012-10-16 at the Wayback Machine.
  9. "Fish with colocasia and sponge gourd | Bhul kosu aru mas" . Retrieved 2019-05-21.
  10. "Peerkangai kootu | Ridge gourd kootu". southindianfoods.in. Retrieved 2019-05-21.
  11. "Peerkangai Tuvaiyal". Saffron Trail. 25 April 2006. Retrieved 2019-05-21.
  12. "Ridge Gourd chutney without coconut". udupi-recipes.com. 23 February 2016. Retrieved 10 January 2020.
  13. ZAELOR, Jingyoh; JULSIRIKUL, Duangta; KITTHAWEE, Sangvorn (2021-01-17). "Genetic Diversity and Population Structure of Zeugodacus tau Walker (Diptera: Tephritidae) in Southern Thailand". Walailak Journal of Science and Technology. 18 (4). doi: 10.48048/wjst.2020.7291 . ISSN   2228-835X. S2CID   234212403.
  14. Shen, Jianhu; Min Xie, Yi; Huang, Xiaodong; Zhou, Shiwei; Ruan, Dong (2012-11-01). "Mechanical properties of luffa sponge". Journal of the Mechanical Behavior of Biomedical Materials. 15: 141–152. doi:10.1016/j.jmbbm.2012.07.004. ISSN   1751-6161. PMID   23032434.
  15. 1 2 3 4 5 6 7 Chen, Qiang; Shi, Quan; Gorb, Stanislav N.; Li, Zhiyong (2014-04-11). "A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant". Journal of Biomechanics. 47 (6): 1332–1339. doi:10.1016/j.jbiomech.2014.02.010. ISSN   0021-9290. PMID   24636532.
  16. 1 2 doi : 10.3390/ma10050479
  17. 1 2 3 Gibson, Lorna J. (March 2005). "Biomechanics of cellular solids". Journal of Biomechanics. 38 (3): 211–223. doi:10.1016/j.jbiomech.2004.09.027. PMID   15652536.
  18. 1 2 Shen, Jianhu; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Ruan, Dong (2013-07-01). "Behaviour of luffa sponge material under dynamic loading". International Journal of Impact Engineering. 57: 17–26. doi:10.1016/j.ijimpeng.2013.01.004. ISSN   0734-743X.
  19. Chakravarty, H. L. (October 1948). "Extrafloral Glands of Cucurbitaceæ". Nature. 162 (4119): 576–577. Bibcode:1948Natur.162..576C. doi:10.1038/162576b0. S2CID   4128826.