This is a timeline of scientific and technological advancements as well as notable academic or government publications in the area of atmospheric sciences and meteorology during the 21st century. Some historical weather events are included that mark time periods where advancements were made, or even that sparked policy change.
A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, although the word cyclone is used in meteorology to name a weather system with a low-pressure area in the center around which, from an observer looking down toward the surface of the Earth, winds blow counterclockwise in the Northern Hemisphere and clockwise in the Southern. Tornadoes come in many shapes and sizes, and they are often visible in the form of a condensation funnel originating from the base of a cumulonimbus cloud, with a cloud of rotating debris and dust beneath it. Most tornadoes have wind speeds less than 180 kilometers per hour, are about 80 meters across, and travel several kilometers before dissipating. The most extreme tornadoes can attain wind speeds of more than 480 kilometers per hour (300 mph), can be more than 3 kilometers (2 mi) in diameter, and can stay on the ground for more than 100 km (62 mi).
The Fujita scale, or Fujita–Pearson scale, is a scale for rating tornado intensity, based primarily on the damage tornadoes inflict on human-built structures and vegetation. The official Fujita scale category is determined by meteorologists and engineers after a ground or aerial damage survey, or both; and depending on the circumstances, ground-swirl patterns, weather radar data, witness testimonies, media reports and damage imagery, as well as photogrammetry or videogrammetry if motion picture recording is available. The Fujita scale was replaced with the Enhanced Fujita scale (EF-Scale) in the United States in February 2007. In April 2013, Canada adopted the EF-Scale over the Fujita scale along with 31 "Specific Damage Indicators" used by Environment Canada (EC) in their ratings.
Tetsuya Theodore Fujita was a Japanese and American meteorologist whose research primarily focused on severe weather. His research at the University of Chicago on severe thunderstorms, tornadoes, hurricanes, and typhoons revolutionized the knowledge of each. Although he is best known for creating the Fujita scale of tornado intensity and damage, he also discovered downbursts and microbursts and was an instrumental figure in advancing modern understanding of many severe weather phenomena and how they affect people and communities, especially through his work exploring the relationship between wind speed and damage.
This article lists various tornado records. The most "extreme" tornado in recorded history was the Tri-State tornado, which spread through parts of Missouri, Illinois, and Indiana on March 18, 1925. It is considered an F5 on the Fujita Scale, holds records for longest path length at 219 miles (352 km) and longest duration at about 3+1⁄2 hours. The 1974 Guin tornado had the highest forward speed ever recorded in a violent tornado, at 75 mph (121 km/h). The deadliest tornado in world history was the Daulatpur–Saturia tornado in Bangladesh on April 26, 1989, which killed approximately 1,300 people. In the history of Bangladesh, at least 19 tornadoes killed more than 100 people each, almost half of the total for the world. The most extensive tornado outbreak on record was the 2011 Super Outbreak, which resulted in 367 tornadoes and 324 tornadic fatalities, whereas the 1974 Super Outbreak was the most intense tornado outbreak on tornado expert Thomas P. Grazulis's outbreak intensity score with 578, as opposed to the 2011 outbreak's 378.
The Enhanced Fujita scale rates tornado intensity based on the severity of the damage they cause. It is used in some countries, including the United States and France. The EF scale is also unofficially used in other countries, including China.
Timothy Patrick Marshall is an American structural and forensic engineer as well as meteorologist, concentrating on damage analysis, particularly that from wind, hail, and other weather phenomena. He is also a pioneering storm chaser and was editor of Storm Track magazine.
Thomas P. Grazulis is an American meteorologist who has written extensively about tornadoes and produced documentaries as head of The Tornado Project.
Tornadoes are more common in the United States than in any other country or state. The United States receives more than 1,200 tornadoes annually—four times the amount seen in Europe. Violent tornadoes—those rated EF4 or EF5 on the Enhanced Fujita Scale—occur more often in the United States than in any other country.
The 2013 El Reno tornado was an extremely large, powerful, and erratic tornado that occurred over rural areas of Central Oklahoma during the early evening of Friday, May 31, 2013. This rain-wrapped, multiple-vortex tornado was the widest tornado ever recorded and was part of a larger weather system that produced dozens of tornadoes over the preceding days. The tornado initially touched down at 6:03 p.m. Central Daylight Time (2303 UTC) about 8.3 miles (13.4 km) west-southwest of El Reno, rapidly growing in size and becoming more violent as it tracked through central portions of Canadian County. Remaining over mostly open terrain, the tornado did not impact many structures; however, measurements from mobile weather radars revealed extreme winds in excess of 313 mph (504 km/h) within the vortex. These are among the highest observed wind speeds on Earth, just slightly lower than the wind speeds of the 1999 Bridge Creek–Moore tornado. As it crossed U.S. 81, it had grown to a record-breaking width of 2.6 miles (4.2 km), beating the previous width record set in 2004. Turning northeastward, the tornado soon weakened. Upon crossing Interstate 40, the tornado dissipated around 6:43 p.m. CDT (2343 UTC), after tracking for 16.2 miles (26.1 km), it avoided affecting the more densely populated areas near and within the Oklahoma City metropolitan area.
The following is a glossary of tornado terms. It includes scientific as well as selected informal terminology.
Hurricane Isbell spawned one of the most significant tornado outbreaks to strike the Miami metropolitan area on October 14, 1964. It produced at least nine confirmed, and possibly as many as 17, tornadoes, four of which were rated significant (F2) on the Fujita scale. Although there were no fatalities, 48 people were injured and losses totaled $560,250. The most damaging of the tornadoes was an estimated F2 that injured 22 people at a mobile home park in Briny Breezes, causing $250,000 in losses.
On October 3–4, 1964, Hurricane Hilda and its remnants generated a tornado outbreak over portions of the Southeastern United States. The outbreak, which yielded at least 12 confirmed tornadoes, killed 22 people and injured 175 others. Most of the casualties occurred as a result of the 1964 Larose tornado that devastated the northern outskirts of Larose, Louisiana, becoming the deadliest hurricane-generated tornado on record since 1900 and one of only two violent tornadoes (F4+) recorded in the southern Gulf Coast region of Louisiana. The tornado was also one of only two F4s known to have been produced by a tropical cyclone, the other having occurred during Hurricane Carla on September 12, 1961.
The International Fujita scale rates the intensity of tornadoes and other wind events based on the severity of the damage they cause. It is used by the European Severe Storms Laboratory (ESSL) and various other organizations including Deutscher Wetterdienst (DWD) and State Meteorological Agency (AEMET). The scale is intended to be analogous to the Fujita and Enhanced Fujita scales, while being more applicable internationally by accounting for factors such as differences in building codes.
The history of tornado research spans back centuries, with the earliest documented tornado occurring in 200 and academic studies on them starting in the 18th century. This is a timeline of government or academic research into tornadoes.