Varanoid Hypothesis |
---|
Pythonomorph Hypothesis | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Ophidiomorph Hypothesis |
---|
Stem-scleroglossan Hypothesis | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Mosasauria | |
---|---|
Clockwise from top left: dolichosaurids ( Dolichosaurus , Pontosaurus , and Tetrapodophis ) and mosasauroids ( Mosasaurus and Opetiosaurus ) | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Reptilia |
Order: | Squamata |
Suborder: | Anguimorpha |
Clade: | † Mosasauria Marsh, 1880 |
Subgroups | |
Mosasauria is a clade of aquatic and semiaquatic squamates that lived during the Cretaceous period. Fossils belonging to the group have been found in all continents around the world. Early mosasaurians like dolichosaurs were small long-bodied lizards that inhabited nearshore coastal and freshwater environments; the Late Cretaceous saw the rise of large marine forms, the mosasaurids, which are the clade's best-known members. [4]
The clade is defined as all descendants of the last common ancestor of the mosasaur Mosasaurus hoffmannii and dolichosaurs Dolichosaurus , Coniasaurus , and Adriosaurus suessi . [5] Its placement within the squamate tree is highly controversial. Two prominent hypotheses include the varanoid hypothesis, which holds that mosasaurians are most closely related to monitor lizards, and the pythonomorph hypothesis, which argues for a sister relationship with snakes. A third ophidiomorph hypothesis argues that snakes are members of the Mosasauria as modern descendants of the dolichosaurs, while a fourth stem-scleroglossan hypothesis considers neither group to be related to the mosasaurians. [6]
The specific placement of Mosasauria within the Squamata has been controversial since its inception, with early debate focusing on the classification of the mosasaurs. Cuvier was the first scientist to deeply analyze their possible taxonomic placement through Mosasaurus. While his original 1808 hypothesis that the genus was a lizard with affinities to monitor lizards remained the most popular, Cuvier was uncertain, even at the time, about the accuracy of this placement. He simultaneously proposed a number of alternative hypotheses, with one such alternative suggesting that Mosasaurus instead had closer affinities with iguanas due to their shared presence of pterygoid teeth. With the absence of sufficient fossil evidence, researchers during the early and mid-19th century had little to work with. Instead, they primarily relied on stratigraphic associations and Cuvier's 1808 research on the holotype skull. Thus, in-depth research on the placement of Mosasaurus was not undertaken until the discovery of more complete mosasaur fossils during the late 19th century, which reignited research on the placement of mosasaurs among squamates. [7]
In a span of about 30 to 40 years during the late 19th to early 20th centuries, paleontologists fiercely debated the issue, which created two major schools of thought: one that supported a monitor lizard relationship and one that supported a closer relationship with snakes. [7] The proposition of a snake relationship was spearheaded by Cope, who first published such a hypothesis in 1869 by proposing that mosasaurs, which he classified under a group called the Pythonomorpha, was the sister group of snakes. Some scientists went as far as to interpret mosasaurs as direct ancestors of snakes. [8] Many opponents of snake affinities argued that mosasaurs belong among monitor lizards in Anguimorpha. Within that group placement varied, from placing mosasaurs within Varanoidea or its sister taxa, or as true monitor lizards within Varanidae. [7] These debates spawned higher taxonomic groups that were erected in attempts to classify the placement of mosasaurs (although not all are compatible). One of these was the Mosasauria, initially a loosely-defined group erected by Marsh in 1880 but redefined to its current definition by Conrad (2008). [5]
In 1923, Charles Lewis Camp published Classification of the Lizards, in which he proposed through the review and rebuttal of previous arguments using his own anatomical observations that all taxa more closely related to Mosasaurus than Dolichosaurus should be classified into a superfamily called the Mosasauroidea, which would be a sister superfamily to the Varanoidea. [7] [9] Camp's take on the subject virtually ended the snake-monitor lizard debate for approximately 70 years, with nearly all subsequent studies supporting a relationship with monitor lizards. However, many studies continued to support going further than Camp in the monitor lizard relationship, placing mosasaurs within the Varanoidea. [7]
It has been suggested that Ophidiomorpha be merged into this section. (Discuss) Proposed since February 2024. |
It has been suggested that Pythonomorpha be merged into this section. (Discuss) Proposed since February 2024. |
The debate was reignited with the publication of a 1997 cladistical study by Michael S. Y. Lee, which recovered the Mosasauroidea as a sister taxon to the snake suborder Serpentes and resurrected the argument for a snake relationship. [7] [10] Prior, there had never been a modern phylogenetic study specifically testing the relationships between mosasaurians or snakes. Lee also resurrected the defunct Pythonomorpha and redefined it to unify the Mosasauroidea and Serpentes under one clade. [10] Multiple subsequent studies conducted by scientists such as Lee, Caldwell, and Alessandro Palci refined this hypothesis, where in some, the Mosasauria clade was revived and repurposed. [7] [8] However, there still remained little consensus. For example, a large-scale phylogenetic study by Conrad (2008) recovered the Mosasauria in a polytomy, or a clade with unresolved relationships, with monitor lizards and beaded lizards; [5] and a 2012 study by Gauthier et al. recovered Mosasauria as a clade basal to both monitor lizards and snakes. [11]
With the advent of molecular genetics during the 2010s, some scientists argued for the combining of molecular and morphological data to examine relationships between mosasaurs and living squamates. [12] [13] An early study was Lee (2009), which based on nuclear and mitochondrial DNA in living squamates and morphological data recovered mosasaurs as a stem group to snakes, [14] which some later authors interpreted as placement of snakes within the Mosasauria clade itself. [12] However, a 2010 study by Wiens et al. attempted to replicate Lee (2009) using a larger dataset but instead yielded results that recovered the Mosasauria as a sister clade to the monitor lizards. [12] The frequent discrepancies are due to the high prevalence of convergent evolution in squamates, which creates much room for interpreting molecular and morphological data; many of these studies had results that often contradicted each other, for example in completely different phylogenetic results by simply adding more datasets or varying which taxa are represented, which resulted in various conflicts creating even more uncertainty. Due to this, some scientists argued that a molecular perspective should be abandoned entirely. [13] [15] Nevertheless, other scientists have attempted to resolve these problems. One approach was utilized by a 2015 study by Reeder et al.: it closely integrated morphological, molecular, and paleontological data in a large dataset to overcome previous conflicts, which revealed new morphological support for molecular results that recovered Mosasauria as a sister clade to Serpentes. [13] Another approach was developed by R. Alexander Pyron in a 2016 study, which also recovered Mosasauria as a sister clade to the Serpentes. [16] A 2022 study suggested that many of the characters uniting snakes and mosasaurians were based on ambiguous or misinterpreted characters, and suggested that a close relationship to Varanoidea within Anguimorpha was the best supported hypothesis. [6]
Varanoid Hypothesis |
---|
Pythonomorph Hypothesis | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Ophidiomorph Hypothesis |
---|
Stem-scleroglossan Hypothesis | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Squamata is the largest order of reptiles, comprising lizards and snakes. With over 12162 Species, it is also the second-largest order of extant (living) vertebrates, after the perciform fish. Squamates are distinguished by their skins, which bear horny scales or shields, and must periodically engage in molting. They also possess movable quadrate bones, making possible movement of the upper jaw relative to the neurocranium. This is particularly visible in snakes, which are able to open their mouths very wide to accommodate comparatively large prey. Squamates are the most variably sized living reptiles, ranging from the 16 mm (0.63 in) dwarf gecko to the 6.5 m (21 ft) reticulated python. The now-extinct mosasaurs reached lengths over 14 m (46 ft).
Dibamidae or blind skinks is a family of lizards characterized by their elongated cylindrical body and an apparent lack of limbs. Female dibamids are entirely limbless and the males retain small flap-like hind limbs, which they use to grip their partner during mating. They have a rigidly fused skull, lack pterygoid teeth and external ears. Their eyes are greatly reduced, and covered with a scale.
The Varanidae are a family of lizards in the superfamily Varanoidea and order Anguimorpha. The family, a group of carnivorous and frugivorous lizards, includes the living genus Varanus and a number of extinct genera more closely related to Varanus than to the earless monitor lizard (Lanthanotus). Varanus includes the Komodo dragon, crocodile monitor, savannah monitor, the goannas of Australia and Southeast Asia, and various other species with a similarly distinctive appearance. Their closest living relatives are the earless monitor lizard and Chinese crocodile lizard. The oldest members of the family are known from the Late Cretaceous of Mongolia.
Ophidia is a group of squamate reptiles including modern snakes and reptiles more closely related to snakes than to other living groups of lizards.
Several groups of tetrapods have undergone secondary aquatic adaptation, an evolutionary transition from being purely terrestrial to living at least part of the time in water. These animals are called "secondarily aquatic" because although their ancestors lived on land for hundreds of millions of years, they all originally descended from aquatic animals. These ancestral tetrapods had never left the water, and were thus primarily aquatic, like modern fishes. Secondary aquatic adaptations tend to develop in early speciation as the animal ventures into water in order to find available food. As successive generations spend more time in the water, natural selection causes the acquisition of more adaptations. Animals of later generations may spend most their life in the water, coming ashore for mating. Finally, fully adapted animals may take to mating and birthing in water or ice.
Mosasaurus is the type genus of the mosasaurs, an extinct group of aquatic squamate reptiles. It lived from about 82 to 66 million years ago during the Campanian and Maastrichtian stages of the Late Cretaceous. The genus was one of the first Mesozoic marine reptiles known to science—the first fossils of Mosasaurus were found as skulls in a chalk quarry near the Dutch city of Maastricht in the late 18th century, and were initially thought to be crocodiles or whales. One skull discovered around 1780 was famously nicknamed the "great animal of Maastricht". In 1808, naturalist Georges Cuvier concluded that it belonged to a giant marine lizard with similarities to monitor lizards but otherwise unlike any known living animal. This concept was revolutionary at the time and helped support the then-developing ideas of extinction. Cuvier did not designate a scientific name for the animal; this was done by William Daniel Conybeare in 1822 when he named it Mosasaurus in reference to its origin in fossil deposits near the Meuse River. The exact affinities of Mosasaurus as a squamate remain controversial, and scientists continue to debate whether its closest living relatives are monitor lizards or snakes.
Toxicofera is a proposed clade of scaled reptiles (squamates) that includes the Serpentes (snakes), Anguimorpha and Iguania. Toxicofera contains about 4,600 species, of extant Squamata. It encompasses all venomous reptile species, as well as numerous related non-venomous species. There is little morphological evidence to support this grouping; however, it has been recovered by all molecular analyses as of 2012.
The Mosasaurinae are a subfamily of mosasaurs, a diverse group of Late Cretaceous marine squamates. Members of the subfamily are informally and collectively known as "mosasaurines" and their fossils have been recovered from every continent except for South America.
Pythonomorpha was originally proposed by paleontologist Edward Drinker Cope (1869) as a reptilian order comprising mosasaurs, which he believed to be close relatives of Ophidia (snakes). The etymology of the term Pythonomorpha comes from the Greek Python and morphe ("form"), and refers to the generally serpentine body plan of members of the group. Cope wrote, "In the mosasauroids, we almost realize the fictions of snake-like dragons and sea-serpents, in which men have been ever prone to indulge. On account of the ophidian part of their affinities, I have called this order Pythonomorpha." Cope incorporated two families, the Clidastidae and the Mosasauridae.
Aigialosauridae is a family of Late Cretaceous semiaquatic pythonomorph lizards closely related to the mosasaurs. Regarded by some paleontologists as a distinct monophyletic group and by others as an adaptive grade within the basal mosasauroids, recent molecular and morphological data suggests that they are the oldest known members of the lineage leading to the mosasaurs.
The Anguimorpha is a suborder of squamates. The group was named by Fürbringer in 1900 to include all autarchoglossans closer to Varanus and Anguis than Scincus. These lizards, along with iguanians and snakes, constitute the proposed "venom clade" Toxicofera of all venomous reptiles.
Taniwhasaurus is an extinct genus of mosasaurs that lived during the Campanian stage of the Late Cretaceous. It is a member of the subfamily Tylosaurinae, a lineage of mosasaurs characterized by a long toothless conical rostrum. Two valid species are attached to the genus, T. oweni and T. antarcticus, known respectively from the fossil record of present-day New Zealand and Antarctica. Two other species have been nominally classified within the genus, T. 'capensis' and T. 'mikasaensis', recorded in present-day South Africa and Japan, but their attribution remains problematic due to the fragmentary state of their fossils. The generic name literally means "taniwha lizard", referring to a supernatural aquatic creature from Māori mythology.
Sineoamphisbaena is an extinct genus of squamate of uncertain phylogenetic placement. Its fossils have been found in Late Cretaceous deposits in Inner Mongolia, China. It contains a single species, Sineoamphisbaenia hexatabularis.
Mosasauroidea is a superfamily of extinct marine lizards that existed during the Late Cretaceous. Basal members of this group consist of small semiaquatic forms with terrestrial limbs ("plesiopedal"), while laters members include larger fully aquatic paddle-limbed ("hydropedal") forms commonly known as mosasaurs. These were traditionally grouped within their own separate families, the Aigialosauridae and Mosasauridae respectively. However, phylogenetic studies have since found plesiopedal mosasauroids to be a non-monophyletic group, with some taxa nestled within the mosasaurids.
Platynota is a polyphyletic group of anguimorph lizards and thus belongs to the order Squamata of the class Reptilia. Since it was named in 1839, it has included several groups, including monitor lizards, snakes, mosasaurs, and helodermatids. Its taxonomic use still varies, as it is sometimes considered equivalent to the group Varanoidea and other times viewed as a distinct group. It is phylogenetically defined as a clade containing Varanidae. It also includes many extinct species.
Aigialosaurus is an extinct genus of Late Cretaceous marine or semiaquatic lizard classified as part of the family Aigialosauridae within the Mosasauroidea. Exclusively found in deposits of Cenomanian age near Hvar, Croatia, the genus contains one valid species, A. dalmaticus. According to recent molecular and morphological data, Aigialosaurus is the oldest known member of the lineage leading to large Cretaceous marine reptiles called mosasaurs, a group most closely related to snakes among living squamates. It was a relatively small reptile with a complete specimen measuring 65 cm (2.13 ft) long.
Monstersauria is a clade of anguimorph lizards, defined as all taxa more closely related to Heloderma than Varanus. It includes Heloderma, as well as several extinct genera, such as Estesia, Primaderma and Gobiderma, but this group was found to be polyphyletic in the most recent and complete squamate phylogenetic analysis by Reeder et al. (2015).
Reptiles arose about 320 million years ago during the Carboniferous period. Reptiles, in the traditional sense of the term, are defined as animals that have scales or scutes, lay land-based hard-shelled eggs, and possess ectothermic metabolisms. So defined, the group is paraphyletic, excluding endothermic animals like birds that are descended from early traditionally-defined reptiles. A definition in accordance with phylogenetic nomenclature, which rejects paraphyletic groups, includes birds while excluding mammals and their synapsid ancestors. So defined, Reptilia is identical to Sauropsida.
Dolichosauridae is a family of Cretaceous aquatic lizards. They are widely considered to be the earliest and most primitive members of Mosasauria, though some researchers have recovered them as more closely related to snakes.
Ophidiomorpha is a proposed clade composed of snakes and a number of extinct squamate groups. The clade was defined by Placi and Caldwell in 2007 as a node-based clade containing the most recent common ancestor of dolichosaurs, adriosaurs, Aphanizocnemus, and fossil and extant Ophidia and all of its descendants.