Myxococcus

Last updated

Myxococcus
M. xanthus development.png
Fruiting bodies of M. xanthus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Myxococcota
Class: Myxococcia
Order: Myxococcales
Family: Myxococcaceae
Genus: Myxococcus
Thaxter 1892
Type species
Myxococcus fulvus
(Cohn 1875) Jahn 1911
Species

See text

Synonyms
  • Myxococcus section "Simplices" Jahn 1911
  • Myxococcus section "Stipitatae" Jahn 1911

Myxococcus is a genus of bacteria in the family Myxococcaceae. Myxococci are Gram-negative, spore-forming, chemoorganotrophic, obligate aerobes. They are elongated rods with rounded or tapered ends, and they are nonflagellated. The cells utilize gliding motility to move and can predate other bacteria. The genus has been isolated from soil.

Contents

At least eleven species had been identified with confidence by late 2020 and each had been characterised to some extent. As well as using traditional biochemical tests, strains of some species had been compared using whole genome sequences. This approach has provided evidence that the genus, like most bacterial genera, has a core set of genes found in all members of the genus, along with others that are confined to particular species. The identity of Myxococcus species therefore continues to change. An example where taxonomy may be changed is that comparisons of genome sequences and biochemical tests indicated that M. xanthus and M. virescens were not distinguishable. [1] [2]

One notable characteristic of Myxococcus is its formation of fruiting bodies. Myxococcus are known to form fruiting bodies using chemical signals. The cells communicate with each other, and in response to stress factors, most often starvation, begin to form fruiting bodies. These fruiting bodies then allow Myxococcus to transform into round spores resistant to the environment. [3] The genetic programs underlying fruiting body formation in the Myxococci exhibit an unexpected level of plasticity, strongly suggesting that the genetic program underlying fruiting body formation in various Myxococci is not conserved, leading to diverse reactions in all Myxococcus species. [4] Rather than chemotaxis used by other microorganisms for cell-cell communication, Myxococcus, specifically M. xanthus, a species of Myxococcus, has been found to use direct cell-to-cell communication to form fruiting bodies. [3]

In addition, Myxococcus prey interacts with one another by sending quorum signals using acyl homoserine lactones (AHLs). It was discovered that AHLs increased some Myxococcus colonies' predatory behavior and growth rates. Therefore, the predatory behavior of these Myxococcus bacteria appears to be enhanced by the presence of xenic quorum signaling molecules. Some Myxococcus bacteria employ AHLs as indicators of nearby prey, possibly listening in on talks between prey creatures in the wild. [5]

This cooperation between different individual Myxococcus allows them to act as a singular organism and perform functions as such, including but not limited to homeostasis repair. While fruiting body development occurs through the Myxococcus genus, it can take on a variety of structures, and dome-shaped mounds have been observed in some species. [6] Social interactions are major in the myxobacteria's life cycle. In significant groupings compared to wolf packs, cells prey on other bacteria during vegetative growth. When starved, cells produce a macroscopic fruiting body dense with spores. The current state of knowledge on cell-cell signaling during development is reflected in these behavioral activities. [7]

Myxococcus is a single celled predatory bacteria that are facultative bacteria. Myxococcus are social microbes and often seen as exhibiting “wolf-pack” behavior. [8] They are able to communicate with each other via quorum sensing. Myxococcus are seen as predatory microbial communities because of their behavior. They are able to form several distinct multicellular structures. Myxococcus are found in soil. Single cells combine and form large clusters using quorum sensing. When nutrients are unavailable, these cells become fruiting bodies that contain approximately 50,000 cells. [9] One study found that after placing the bacteria in starving conditions they aggregated into mounds of 100,000 cells. [10]

Myxococcus Quorum Sensing

Myxococcus are able to prey [11] and thrive on soil bacteria, plant pathogens, cyanobacteria. Multiple studies have shown that under laboratory conditions Myxococcus can thrive off these prey species. [11] Myxococcus are able to prey using gliding motility. There are two [10] of these systems: (i) social (S)-motility and adventurous (A)-motility. Social motility is based on IV pili and adventurous motility is based on slime-secretion.

Myxococcus is a soil-dwelling bacterium that can aggregate into fruiting bodies when food is scarce. This process is regulated by quorum sensing, a type of cell-to-cell communication that allows bacteria to coordinate their behavior in response to population density. [12]

In Myxococcus, quorum sensing is mediated by two signaling molecules: A-factor and C-signal. A-factor is a small, diffusible molecule that is produced by all cells in the population. When the concentration of A-factor reaches a certain threshold, it binds to receptors on the surface of cells and triggers a cascade of events that leads to aggregation. [13]

C-signal is a larger, cell-surface protein that is not diffusible. It is produced by a subset of cells in the population and binds to receptors on the surface of other cells. This interaction triggers a cascade of events that leads to the formation of fruiting bodies. Quorum sensing is essential for the survival of Myxococcus. By aggregating into fruiting bodies, the bacteria can protect themselves from predators and desiccation. They can also produce spores that can survive in harsh environments until conditions improve. Quorum sensing is a complex process that is still not fully understood. However, it is clear that it plays an important role in the life cycle of Myxococcus and other bacteria. [14] [15]

In addition to its role in aggregation and fruiting body formation, quorum sensing also regulates other aspects of Myxococcus development, such as motility, chemotaxis, and virulence. Quorum sensing is also used by Myxococcus to communicate with other bacteria, such as its prey. [16] This allows the bacteria to coordinate their activities and improve their chances of survival.

Myxococcus secretes antibiotics and bacteriolytic enzymes to kill their prey. Because of this, there has been speculation of using Myxococcus as novel antibacterial strategies. [11]

Sources

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [17] and National Center for Biotechnology Information (NCBI) [18]

16S rRNA based LTP_08_2023 [19] [20] [21] 120 marker proteins based GTDB 08-RS214 [22] [23] [24]
Myxococcus

M. fulvus(Cohn 1875) Jahn 1911

M. dinghuensisWang et al. 2023

M. stipitatusThaxter 1897

Pyxidicoccus xibeiensis Wang et al. 2023

Pyxidicoccus fallax corrig. Reichenbach 2007

Pyxidicoccus trucidator Chambers et al. 2020

M. guangdongensisWang et al. 2023

M. qinghaiensisWang et al. 2023

M. eversorChambers et al. 2021 [1]

M. llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis
Chambers et al. 2021 [1]

M. vastatorChambers et al. 2021 [1]

M. macrosporus(Krzemieniewska & Krzemieniewski 1926) Zahler & McCurdy 1974

M. virescensThaxter 1892

M. xanthus Beebe 1941

Myxococcus

M. stipitatus

M. fulvus

M. eversor

M. llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis

Pyxidicoccus fallax

Pyxidicoccus caerfyrddinensisChambers et al. 2020

Pyxidicoccus trucidator

"M. hansupus" Sharma et al. 2016 [2]

M. macrosporus

M. vastator

M. virescens

M. xanthus

See also

Related Research Articles

<span class="mw-page-title-main">Pilus</span> A proteinaceous hair-like appendage on the surface of bacteria

A pilus is a hair-like cell-surface appendage found on many bacteria and archaea. The terms pilus and fimbria can be used interchangeably, although some researchers reserve the term pilus for the appendage required for bacterial conjugation. All conjugative pili are primarily composed of pilin – fibrous proteins, which are oligomeric.

In biology, quorum sensing or quorum signaling (QS) is the process of cell-to-cell communication that allows bacteria to detect and respond to cell population density by gene regulation, typically as a means of acclimating to environmental disadvantages.

<span class="mw-page-title-main">Myxobacteria</span> Order of bacteria

The myxobacteria are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter and Vulgatibacter. One species of myxobacteria, Minicystis rosea, has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum.

<i>Aliivibrio fischeri</i> Species of bacterium

Aliivibrio fischeri is a Gram-negative, rod-shaped bacterium found globally in marine environments. This bacterium grows most effectively in water with a salt concentration at around 20g/L, and at temperatures between 24 and 28°C. This species is non-pathogenic and has bioluminescent properties. It is found predominantly in symbiosis with various marine animals, such as the Hawaiian bobtail squid. It is heterotrophic, oxidase-positive, and motile by means of a tuft of polar flagella. Free-living A. fischeri cells survive on decaying organic matter. The bacterium is a key research organism for examination of microbial bioluminescence, quorum sensing, and bacterial-animal symbiosis. It is named after Bernhard Fischer, a German microbiologist.

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane - and has high resistance to several antibiotics. According to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

Microbial intelligence is the intelligence shown by microorganisms. This includes complex adaptive behavior shown by single cells, and altruistic or cooperative behavior in populations of like or unlike cells. It is often mediated by chemical signalling that induces physiological or behavioral changes in cells and influences colony structures.

<i>Myxococcus xanthus</i> Slime bacterium

Myxococcus xanthus is a gram-negative, bacillus species of myxobacteria that is typically found in the top-most layer of soil. These bacteria lack flagella; rather, they use pili for motility. M. xanthus is well-known for its predatory behavior on other microorganisms. These bacteria source carbon from lipids rather than sugars. They exhibit various forms of self-organizing behavior in response to environmental cues. Under normal conditions with abundant food, they exist as predatory, saprophytic single-species biofilm called a swarm, highlighting the importance of intercellular communication for these bacteria. Under starvation conditions, they undergo a multicellular development cycle.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit the air, soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<span class="mw-page-title-main">Bacterial motility</span> Ability of bacteria to move independently using metabolic energy

Bacterial motility is the ability of bacteria to move independently using metabolic energy. Most motility mechanisms that evolved among bacteria also evolved in parallel among the archaea. Most rod-shaped bacteria can move using their own power, which allows colonization of new environments and discovery of new resources for survival. Bacterial movement depends not only on the characteristics of the medium, but also on the use of different appendages to propel. Swarming and swimming movements are both powered by rotating flagella. Whereas swarming is a multicellular 2D movement over a surface and requires the presence of surfactants, swimming is movement of individual cells in liquid environments.

<span class="mw-page-title-main">Cyclic di-GMP</span> Chemical compound

Cyclic di-GMP is a second messenger used in signal transduction in a wide variety of bacteria. Cyclic di-GMP is not known to be used by archaea, and has only been observed in eukaryotes in Dictyostelium. The biological role of cyclic di-GMP was first uncovered when it was identified as an allosteric activator of a cellulose synthase found in Gluconacetobacter xylinus in order to produce microbial cellulose.

<span class="mw-page-title-main">Gliding motility</span> Method of mobility used by microorganisms

Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.

Vampirococcus is an informally described genus of ovoid Gram-negative bacteria, but the exact phylogeny remains to be determined. This predatory prokaryote was first described in 1983 by Esteve et al. as small, anaerobic microbe about 0.6 μm wide before being given the name of Vampirococcus in 1986 by Guerrero et al. This prokaryote is a freshwater obligate predator that preys specifically on various species of the photosynthetic purple sulfur bacterium, Chromatium. As an epibiont, Vampirococcus attaches to the cell surface of their prey and "sucks" out the cytoplasm using a specialized cytoplasmic bridge. They are commonly mentioned as an example of epibionts when discussing strategies employed by bacterial predators. This microbe still has yet to be classified based on genomic sequencing or 16S rRNA because it cannot be sustained long enough outside its natural environment to isolate a pure culture.

<span class="mw-page-title-main">Pxr sRNA</span>

Pxr sRNA is a regulatory RNA which downregulates genes responsible for the formation of fruiting bodies in Myxococcus xanthus. Fruiting bodies are aggregations of myxobacteria formed when nutrients are scarce, the fruiting bodies permit a small number of the aggregated colony to transform into stress-resistant spores.

Stigmatella aurantiaca is a member of myxobacteria, a group of gram-negative bacteria with a complex developmental life cycle.

Anaeromyxobacter dehalogenans is a species of bacteria. It is an aryl-halorespiring facultative anaerobic myxobacterium. Its cells are slender, gram-negative rods with a bright red pigmentation that exhibit gliding motility and form spore-like structures. The type strain is 2CP-1. Anaeromyxobacter dehalogenans have been found to grow under a minimal amount of electrons acceptors.

<span class="mw-page-title-main">Twitching motility</span> Form of crawling bacterial motility

Twitching motility is a form of crawling bacterial motility used to move over surfaces. Twitching is mediated by the activity of hair-like filaments called type IV pili which extend from the cell's exterior, bind to surrounding solid substrates, and retract, pulling the cell forwards in a manner similar to the action of a grappling hook. The name twitching motility is derived from the characteristic jerky and irregular motions of individual cells when viewed under the microscope. It has been observed in many bacterial species, but is most well studied in Pseudomonas aeruginosa, Neisseria gonorrhoeae and Myxococcus xanthus. Active movement mediated by the twitching system has been shown to be an important component of the pathogenic mechanisms of several species.

Enhygromyxa salina is a species of marine myxobacteria. Like other members of this order, E. salina is a rod-shaped Gram-negative bacterium that can move by gliding and can form aggregates of cells called fruiting bodies. E. salina is slightly halophilic (salt-tolerant) and can grow at lower temperatures than other marine myxobacteria. Several novel secondary metabolites have been identified in the species, including unusual sterols. The species was first described in 2003, based on six strains isolated from samples collected from the coastlines of Japan.

<span class="mw-page-title-main">Social motility</span>

Social motility describes the motile movement of groups of cells that communicate with each other to coordinate movement based on external stimuli. There are multiple varieties of each kingdom that express social motility that provides a unique evolutionary advantages that other species do not possess. This has made them lethal killers such as African trypanosomiasis, or Myxobacteria. These evolutionary advantages have proven to increase survival rate among socially motile bacteria whether it be the ability to evade predators or communication within a swarm to form spores for long term hibernation in times of low nutrients or toxic environments.

Myxococcus llanfair­pwll­gwyn­gyll­go­gery­chwyrn­drobwll­llan­tysilio­gogo­gochensis is a gram-negative, rod-shaped species of myxobacteria found in soil. It is a predator on other bacteria.

<span class="mw-page-title-main">Adventurous motility</span>

Adventurous motility is as a type of gliding motility; unlike most motility mechanisms, adventurous motility does not involve a flagellum. Gliding motility usually involves swarms of bacteria; however, adventurous motility is practiced by individual cells. This gliding is hypothesized to occur via assembly of a type IV secretion system and the extrusion of a polysaccharide slime, or by use of a series of adhesion complexes. The majority of research on adventurous motility has focused on the species, Myxococcus xanthus. The earliest of this research is attributed to Jonathan Hodgkin and Dale Kaiser.

References

  1. 1 2 3 4 Chambers, James; Sparks, Natalie; Sydney, Natashia; Livingstone, Paul G.; Cookson, Alan R.; Whitworth, David E. (2020). "Comparative genomics and pan-genomics of the Myxococcaceae, including a description of five novel species: Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov. and Pyxidicoccus trucidator sp. nov". Genome Biology and Evolution. evaa212 (12): 2289–2302. doi:10.1093/gbe/evaa212. PMC   7846144 . PMID   33022031.
  2. 1 2 Sharma, Gaurav; Narwani, Tarun; Subramanian, Srikrishna (2016). "Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus". PLOS ONE. 11 (2): e0148593. Bibcode:2016PLoSO..1148593S. doi: 10.1371/journal.pone.0148593 . PMC   4765838 . PMID   26900859.
  3. 1 2 Sozinova, Olga; Jiang, Yi; Kaiser, Dale; Alber, Mark (14 November 2006). "A three-dimensional model of myxobacterial fruiting-body formation". Proceedings of the National Academy of Sciences. 103 (46): 17255–17259. Bibcode:2006PNAS..10317255S. doi: 10.1073/pnas.0605555103 . PMC   1859919 . PMID   17088558.
  4. Huntley, Stuart; Hamann, Nils; Wegener-Feldbrügge, Sigrun; Treuner-Lange, Anke; Kube, Michael; Reinhardt, Richard; Klages, Sven; Müller, Rolf; Ronning, Catherine M.; Nierman, William C.; Søgaard-Andersen, Lotte (February 2011). "Comparative Genomic Analysis of Fruiting Body Formation in Myxococcales". Molecular Biology and Evolution. 28 (2): 1083–1097. doi: 10.1093/molbev/msq292 . PMID   21037205.
  5. Lloyd, Daniel G.; Whitworth, David E. (2017-03-14). "The Myxobacterium Myxococcus xanthus Can Sense and Respond to the Quorum Signals Secreted by Potential Prey Organisms". Frontiers in Microbiology. 8: 439. doi: 10.3389/fmicb.2017.00439 . PMC   5348527 . PMID   28352265.
  6. Cao, Pengbo; Dey, Arup; Vassallo, Christopher N.; Wall, Daniel (November 2015). "How Myxobacteria Cooperate". Journal of Molecular Biology. 427 (23): 3709–3721. doi:10.1016/j.jmb.2015.07.022. PMC   4658263 . PMID   26254571.
  7. Shimkets, Lawrence J. (October 1999). "Intercellular Signaling During Fruiting-Body Development of Myxococcus xanthus". Annual Review of Microbiology. 53 (1): 525–549. doi:10.1146/annurev.micro.53.1.525. PMID   10547700.
  8. Marshall, Rupert C.; Whitworth, David E. (April 2019). "Is 'Wolf-Pack' Predation by Antimicrobial Bacteria Cooperative? Cell Behaviour and Predatory Mechanisms Indicate Profound Selfishness, Even when Working Alongside Kin". BioEssays. 41 (4): 1800247. doi: 10.1002/bies.201800247 . PMID   30919490. S2CID   85544906.
  9. Curtis, Patrick D.; Taylor, Rion G.; Welch, Roy D.; Shimkets, Lawrence J. (December 2007). "Spatial organization of Myxococcus xanthus during fruiting body formation". Journal of Bacteriology. 189 (24): 9126–9130. doi:10.1128/JB.01008-07. PMC   2168639 . PMID   17921303.
  10. 1 2 Sliusarenko, Oleksii; Zusman, David R.; Oster, George (15 January 2007). "Aggregation during Fruiting Body Formation in Myxococcus xanthus Is Driven by Reducing Cell Movement". Journal of Bacteriology. 189 (2): 611–619. doi:10.1128/JB.01206-06. PMC   1797407 . PMID   17098901.
  11. 1 2 3 Thiery, Susanne; Kaimer, Christine (2020). "The Predation Strategy of Myxococcus xanthus". Frontiers in Microbiology. 11: 2. doi: 10.3389/fmicb.2020.00002 . PMC   6971385 . PMID   32010119.
  12. Smith, Robert P.; Barraza, Ivana; Quinn, Rebecca J.; Fortoul, Marla C. (2020). "The mechanisms and cell signaling pathways of programmed cell death in the bacterial world". Cell Death Regulation in Health and Disease - Part B. International Review of Cell and Molecular Biology. Vol. 352. pp. 1–53. doi:10.1016/bs.ircmb.2019.12.002. ISBN   978-0-12-819929-9. PMID   32334813. S2CID   212759298.
  13. Lloyd, Daniel G.; Whitworth, David E. (2017). "The Myxobacterium Myxococcus xanthus Can Sense and Respond to the Quorum Signals Secreted by Potential Prey Organisms". Frontiers in Microbiology. 8: 439. doi: 10.3389/fmicb.2017.00439 . PMC   5348527 . PMID   28352265.
  14. Bassler, Bonnie L.; Miller, Melissa B. (2013). "Quorum Sensing". The Prokaryotes. pp. 495–509. doi:10.1007/978-3-642-30123-0_60. ISBN   978-3-642-30122-3.
  15. Miller, Melissa B.; Bassler, Bonnie L. (October 2001). "Quorum Sensing in Bacteria". Annual Review of Microbiology. 55 (1): 165–199. doi:10.1146/annurev.micro.55.1.165. PMID   11544353.
  16. Lloyd, Daniel G.; Whitworth, David E. (14 March 2017). "The Myxobacterium Myxococcus xanthus Can Sense and Respond to the Quorum Signals Secreted by Potential Prey Organisms". Frontiers in Microbiology. 8: 439. doi: 10.3389/fmicb.2017.00439 . PMC   5348527 . PMID   28352265.
  17. A.C. Parte; et al. "Myxococcus". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-09-09.
  18. Sayers; et al. "Myxococcus". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-09-09.
  19. "The LTP" . Retrieved 20 November 2023.
  20. "LTP_all tree in newick format" . Retrieved 20 November 2023.
  21. "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  22. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  23. "bac120_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  24. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.