RNase MRP | |
---|---|
Identifiers | |
Symbol | RNase MRP |
Rfam | RF00030 |
Other data | |
RNA type | Gene; ribozyme |
Domain(s) | Eukaryota |
GO | GO:0006364 GO:0000171 GO:0000172 |
SO | SO:0000385 |
PDB structures | PDBe |
RNase MRP (also called RMRP ) is an enzymatically active ribonucleoprotein with two distinct roles in eukaryotes. RNase MRP stands for RNase for Mitochondrial RNA Processing. In mitochondria, it plays a direct role in the initiation of mitochondrial DNA replication. In the nucleus, it is involved in precursor rRNA processing, where it cleaves the internal transcribed spacer 1 between 18S and 5.8S rRNAs. [1] Despite distinct functions, RNase MRP has been shown to be evolutionarily related to RNase P. Like eukaryotic RNase P, RNase MRP is not catalytically active without associated protein subunits. [2]
Mutations in the RNA component of RNase MRP cause cartilage–hair hypoplasia, a pleiotropic human disease. Responsible for this disease is a mutation in the RNase MRP RNA gene (RMRP), a non-coding RNA gene. RMRP was the first non-coding nuclear RNA gene found to cause disease. [3]
RNase MRP and its role in pre-rRNA processing has been previously studied in Yeast cells. RNase MRP has been shown to cleave an internal transcribed spacer, specifically ITS1 at the specific site A3 of the rRNA precursor, leading, after additional trimming, to the formation of the mature 5′-end of 5.8S rRNA. Recent data that has been gathered using several temperature-sensitive RNase MRP mutants that showed that inactivation of RNase MRP leading to severe reduction of the abundance of all early intermediates in the typical rRNA processing pathway. However, the transcription of the rRNA precursor is not affected, thus suggesting that RNase MRP plays a key role in the processing of rRNA beyond the cleavage of the A3 site in ITS1. Further research in Yeast cell RNase MRP has shown a potential role in the regulation of the cell cycle. RNase MRP mutations led to missegregation of plasmids and caused cell cycle delay at the end of mitosis, followed by a buildup of cyclin B2 (CLB2) protein (resulting from increased CLB2 mRNA concentration that codes for the CLB2 protein). RNase MRP also demonstrated cleavage ability of the 5′-UTR of CLB2 mRNA that allows for rapid 5′-to-3′ degradation by XRN1, an exoribonuclease enzyme. [4]
RNase P and RNAse MRP are ribonucleoprotein complexes that are important in RNA processing. Both subunits have a highly conserved P4 helical region, which is a type of nucleic acid tertiary structure. This region is needed for catalytic function, and is probably an important part of the enzyme's active site. RNAse P is found in both eukaryotes and prokaryotes and it cleaves a pre-tRNA to generate the mature 5’ end of the tRNA. RNase MRP is found only in eukaryotes, and is involved in rRNA processing, which is the conversion of preribosomal RNA into mature rRNA through splicing, modifications, and cleavage. The exact mechanism is described above. [5]
These two ribonucleases are most likely evolutionarily related through a common ancestor, since they have common protein subunits and can be folded into very similar secondary structures. There are many conserved regions in these two ribonucleases. Sequences of the CR-I, CR-V, and CR-IV genes in domain 1 of the P4 helical region are conserved, with the consensus sequence in CR-IV being AGNNNNA for RNAse P and AGNNA for RNase MRP. CR-II and CR-III are also conserved in domain 2 of P RNA. The P3 helix is also conserved in both ribonucleases in all eukaryotes, but the function of this helix is not yet clear. These conserved regions are evidence of the close phylogenetic relation between these two important ribonucleoprotein complexes. [5]
Metaphyseal dysplasia without hypotrichosis (MDWH), anauxetic dysplasia (AD), kyphomelic dysplasia (KD), Omenn syndrome (OS) are diseases associated with mutated and (or) dysfunctional RNAse MRP activity, hence, the RMRP gene.
Disease | Abbreviation | Location of mutation | Mutation in RNAse MRP protein or RNA in RNAse MRP? | Symptoms |
---|---|---|---|---|
Cartilage–hair hypoplasia | CHH | 1.Insertion, duplication or triplication at promoter or 2. In RNA transcribed by RNAse MRP | RNA in RNAse MRP | Patients have short stature, skeletal anomalies, blood and immune problems, and fine, light-colored hair |
Metaphyseal dysplasia without hypotrichosis | MDWH | 1. on RMRP Gene-->common insertion being -21-20insTCTGTGAAGCTGGGGAC on paternal allele or 2. 218A-->G point mutation occurring on maternal allele | RNA in RNAse MRP | Patients unable to produce new tubular structures in metaphyses of long bones. This results in porous and expanded long bones |
Anauxetic dysplasia | AD | Homozygous insertion mutation and two compound heterozygous mutations | RNA in RNAse MRP | Early onset of extremely short stature. Adults typically not exceeding 85 cm in height. Abnormal amount of teeth (less than standard amount). Slight mental retardation. |
Kyphomelic dysplasia | KD | Mutation (insertion) of T at 194-195 paternal allele and a 63 C-->T point mutation of the maternal allele. | Undetermined | Form of short-limbed dwarfism. Bowing long bones, dysmorphia, flattened vertebrae, and short ribs. |
Omenn Syndrome | OS | Three mutations in RMRP gene (specifics unknown at this time) | RNA in RNAse MRP | Patients are immunodeficient and have scaly erythroderma and severe reddening of skin. |
Mutations in the RNA component of RNase MRP cause cartilage–hair hypoplasia(CHH), a pleiotropic human disease. Two categories of mutations involving RNAse MRP have been identified in patients with CHH. The first type is when an insertion, duplication, or triplication occurs at the promoter of the RNAse MRP gene between the TATA box and the transcription initiation site. This causes the initiation of RNAse MRP to be slow, or to not occur at all. The second category consists of mutations that are in the transcribed RNA made by the RNAse MRP. Patients with CHH have been identified to have over 70 different mutations in the RNA transcript made by RNAse MRP, whereas around 30 distinct mutations have been identified in the promoter region of the RNAse MRP gene. Most CHH patients have a combination of either a promoter mutation in one allele along with a RNAse MRP RNA mutation in the other allele, or a combination of two RNAse MRP RNA mutations in both alleles. The fact that there is not often a mutation in the promoter region in both alleles shows the lethality of not having this RNA present that is transcribed by RNAse MRP. [6] [7] [8]
Metaphyseal dysplasia Without Hypotrichosis (MDWH) patients are unable to produce normal, new tubular structures in the metaphyses of long bones. People diagnosed with MDWH will therefore tend to experience porous and expanded long bones. The mutation occurs on the RMRP gene in MDWH; the common insertion being (-21-20 insTCTGTGAAGCTGGGGAC) on the paternal allele and a 218A→G point mutation occurring on the maternal allele. MDWH is most likely a variant of CHH. They are the same in that they both display short stature. Some of the same genes involved in the mutations in CHH are the same genes that are mutated in MDWH. [9] These two diseases do differ in that MDWH lacks immunodeficiency and other skeletal features found in CHH patients. [3]
AD is an autosomal recessive spondylometaepiphyseal dysplasia typically characterized by an early (prenatal) onset of extremely short stature and adults that do not typically exceed 85 cm in height. A less than normal amount of teeth and slight mental retardation are also typical of AD. The associated mutation(s) are a homozygous insertion mutation and two compound heterozygous mutations. [3] Mutations in the promoter 5' regulatory region have been associated with this severe skeletal disease. Other names used to describe this condition are spondylometaepiphyseal dysplasia, anauxetic type, spondylometaepiphyseal dysplasia, Menger type. [10]
KD is a form of short-limbed dwarfism. Characteristics of KD are bowing of long bones, dysmorphia, flattened vertebrae, and short ribs. Femoral bowing is the hallmark diagnostic characteristic of KD. Novel mutations have been discovered in the RMRP gene of a single patient with KD, specifically, a mutation (insertion) of T at 194-195 paternal allele and a 63C-->T point mutation of the maternal allele. As with OS, the MSRP gene has not been strictly linked to the diseases but current research is suggestive that the MSRP gene is a factor. KD has been observed in very few patients yet this sublethal disease remains relevant to discussions of the distinct manifestations of minimal change disease. KD is rather similar to several forms of MCD in that it exhibits combined immune deficiency and aplastic anemia. [3]
Omenn syndrome (OS) is a severe immunodeficiency disease, mostly characterized by scaly erythroderma and severe reddening of the skin. OS is also commonly accompanied by enlarged lymphoid tissues, protracted diarrhea, failure to thrive, and eosinophilia. Gene sequences of people with OS reveal three novel mutations in the RMRP gene, suggesting a link to the RMRP gene, but research is ongoing to better ascertain the cause of OS. At the moment there exists only one treatment for OS which is bone marrow transplantation. If no treatment is performed OS is rather fatal resulting in death in infancy. Patients with OS are immunodeficient meaning their immune system is compromised and cannot properly fight infections resulting in serious secondary illnesses. [3]
A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-coding RNAs include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and the long ncRNAs such as Xist and HOTAIR.
Ribonuclease is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 and 3.1 classes of enzymes.
Ribonuclease H is a family of non-sequence-specific endonuclease enzymes that catalyze the cleavage of RNA in an RNA/DNA substrate via a hydrolytic mechanism. Members of the RNase H family can be found in nearly all organisms, from bacteria to archaea to eukaryotes.
The ribosomal DNA consists of a group of ribosomal RNA encoding genes and related regulatory elements, and is widespread in similar configuration in all domains of life. The ribosomal DNA encodes the non-coding ribosomal RNA, integral structural elements in the assembly of ribosomes, its importance making it the most abundant section of RNA found in cells of eukaryotes. Additionally, these segments includes regulatory sections, such as an promotor specific to the RNA polymerase I, as well as both transcribed and non-transcribed spacer segments.
Dyskeratosis congenita (DKC), also known as Zinsser-Engman-Cole syndrome, is a rare progressive congenital disorder with a highly variable phenotype. The entity was classically defined by the triad of abnormal skin pigmentation, nail dystrophy, and leukoplakia of the oral mucosa, and myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), but these components do not always occur. DKC is characterized by short telomeres. The disease initially can affect the skin, but a major consequence is progressive bone marrow failure which occurs in over 80%, causing early mortality.
Cartilage–hair hypoplasia (CHH) is a rare genetic disorder. Symptoms may include short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency, and predisposition to cancer. It was first reported by Victor McKusick in 1965.
Ribonuclease P is a type of ribonuclease which cleaves RNA. RNase P is unique from other RNases in that it is a ribozyme – a ribonucleic acid that acts as a catalyst in the same way that a protein-based enzyme would. Its function is to cleave off an extra, or precursor, sequence of RNA on tRNA molecules. Further, RNase P is one of two known multiple turnover ribozymes in nature, the discovery of which earned Sidney Altman and Thomas Cech the Nobel Prize in Chemistry in 1989: in the 1970s, Altman discovered the existence of precursor tRNA with flanking sequences and was the first to characterize RNase P and its activity in processing of the 5' leader sequence of precursor tRNA. Recent findings also reveal that RNase P has a new function. It has been shown that human nuclear RNase P is required for the normal and efficient transcription of various small noncoding RNAs, such as tRNA, 5S rRNA, SRP RNA and U6 snRNA genes, which are transcribed by RNA polymerase III, one of three major nuclear RNA polymerases in human cells.
The exosome complex is a multi-protein intracellular complex capable of degrading various types of RNA molecules. Exosome complexes are found in both eukaryotic cells and archaea, while in bacteria a simpler complex called the degradosome carries out similar functions.
The 5S ribosomal RNA is an approximately 120 nucleotide-long ribosomal RNA molecule with a mass of 40 kDa. It is a structural and functional component of the large subunit of the ribosome in all domains of life, with the exception of mitochondrial ribosomes of fungi and animals. The designation 5S refers to the molecule's sedimentation coefficient in an ultracentrifuge, which is measured in Svedberg units (S).
Many eukaryotic cells contain large ribonucleoprotein particles in the cytoplasm known as vaults. The vault complex comprises the major vault protein (MVP), two minor vault proteins, and a variety of small untranslated RNA molecules known as vault RNAs only found in higher eukaryotes. These molecules are transcribed by RNA polymerase III.
Trans-regulatory elements (TRE) are DNA sequences encoding upstream regulators, which may modify or regulate the expression of distant genes. Trans-acting factors interact with cis-regulatory elements to regulate gene expression. TRE mediates expression profiles of a large number of genes via trans-acting factors. While TRE mutations affect gene expression, it is also one of the main driving factors for evolutionary divergence in gene expression.
Ribonucleases P/MRP protein subunit POP1 is a protein that in humans is encoded by the POP1 gene.
Ribonuclease P protein subunit p30 is an enzyme that in humans is encoded by the RPP30 gene.
Ribonuclease P protein subunit p38 is an enzyme that in humans is encoded by the RPP38 gene.
RNA component of mitochondrial RNA processing endoribonuclease, also known as RMRP, is a human gene.
Ribonuclease 4 is an enzyme that in humans is encoded by the RNASE4 gene.
Ribonuclease P protein subunit p29 is an enzyme that in humans is encoded by the POP4 gene.
The 5′ flanking region is a region of DNA that is adjacent to the 5′ end of the gene. The 5′ flanking region contains the promoter, and may contain enhancers or other protein binding sites. It is the region of DNA that is not transcribed into RNA. Not to be confused with the 5′ untranslated region, this region is not transcribed into RNA or translated into a functional protein. These regions primarily function in the regulation of gene transcription. 5′ flanking regions are categorized between prokaryotes and eukaryotes.
ATP-binding cassette sub-family E member 1 (ABCE1) also known as RNase L inhibitor (RLI) is an enzyme that in humans is encoded by the ABCE1 gene.
ZC3H12B, also known as CXorf32 or MCPIP2, is a protein encoded by gene ZC3H12B located on chromosome Xq12 in humans.