Sucrose-phosphate synthase

Last updated
sucrose-phosphate synthase
2r68.jpg
Sucrose phosphate synthase monomer, Halothermothrix orenii
Identifiers
EC no. 2.4.1.14
CAS no. 9030-06-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

Sucrose-phosphate synthase (SPS) is a plant enzyme involved in sucrose biosynthesis. Specifically, this enzyme catalyzes the transfer of a hexosyl group from uridine diphosphate glucose (UDP-glucose) to D-fructose 6-phosphate to form UDP and D-sucrose-6-phosphate. [1] [2] This reversible step acts as the key regulatory control point in sucrose biosynthesis, and is an excellent example of various key enzyme regulation strategies such as allosteric control and reversible phosphorylation. [3]

Contents

This enzyme participates in starch and sucrose metabolism. [2]

Nomenclature

This enzyme belongs to the family of glycosyltransferases, specifically the hexosyltransferases. The systematic name of this enzyme class is UDP-glucose:D-fructose 6-phosphate 2-alpha-D-glucosyltransferase. Other names in common use include UDP-glucose-fructose-phosphate glucosyltransferase, sucrosephosphate-UDP glucosyltransferase, UDP-glucose-fructose-phosphate glucosyltransferase, SPS, uridine diphosphoglucose-fructose phosphate glucosyltransferase, sucrose 6-phosphate synthase, sucrose phosphate synthetase, and sucrose phosphate-uridine diphosphate glucosyltransferase.

Structure

RCSB PDB 2R66: Crystal structure shows two Rossman fold domains in SPS. Domain A is depicted in blue, domain B in red. Sucrose Phosphate Synthase.png
RCSB PDB 2R66: Crystal structure shows two Rossman fold domains in SPS. Domain A is depicted in blue, domain B in red.

X-ray diffraction studies have revealed that the structure of Halothermothrix orenii SPS belongs to the GT-B fold family. [1] Like other GT-B proteins, SPS contains two Rossmann fold domains that are named the A domain and the B domain. [4] Generally, the structure of these domains are somewhat similar, as both contain central beta sheets that are surrounded by alpha helices. However, the A domain consists of eight parallel beta strands and seven alpha helices while the B domain contains six parallel beta strands and nine alpha helices. These domains are joined by residue loops to form a substrate binding cleft, where the glucosyl group acceptor binds. [1]

Although H. orenii is a non-photosynthetic bacterium, various studies indicate that the structure of its SPS is similar to plant SPS. First, antibodies with high specificities for plant SPS also target the bacterial SPS, indicating the structure is conserved enough for the antibody to recognize the enzyme as an antigen. Furthermore, genomic studies reveal that closely related plant homologues exhibit up to 54% sequence identities. [1]

Mechanism

Reaction scheme showing hexosyl group transfer from UDP-glucose to fructose 6-phosphate. SPS Mechanism.png
Reaction scheme showing hexosyl group transfer from UDP-glucose to fructose 6-phosphate.

In the open conformation of H. orenii SPS, fructose 6-phosphate forms hydrogen bonds with Gly-33 and Gln-35 residues in the A domain while UDP-glucose interacts with the B-domain. Crystal structures studies reveal that after binding, the two domains twist to narrow the entrance of the substrate binding cleft from 20 Å to 6 Å. In this closed conformation, the Gly-34 residue of the A domain interacts with UDP-glucose and forces the substrate to adapt a folded structure, facilitating its donation of the hexosyl group. [4]

After binding, fructose 6-phosphate will interact with UDP via a hydrogen bond, which lowers the activation energy of the reaction and stabilizes the transition state. Finally, the C1 atom of UDP-glucose undergoes nucleophilic attack by an oxygen atom in fructose 6-phosphate, resulting in glucosyl group transfer to fructose 6-phosphate. Whether or not this mechanism requires a divalent ion is currently unclear, but failed attempts to trap and detect the presence of the magnesium cation suggest that this mechanism is metal ion independent. [1] [4]

Regulatory strategies

Phosphorylation

SPS-kinase reversibly phosphorylates a serine residue and subsequently deactivates SPS, In spinach and maize, the site of phosphorylation regulation has been identified as Ser158 and Ser162 respectively. While it is currently unclear if this seryl residue homolog in other plant SPSes is phosphorylated to suppress SPS activity, conservation of the neighboring residues has been observed in other plant species. This conserved sequence may potentially aid in recognition of a regulatory SPS-kinase. Once phosphorylated, the inactivated enzyme can be dephosphorylated and reactivated by SPS-phosphatase. Aside from controlling the levels of sucrose in the cell, regulation via phosphorylation can help the cell adapt to hyperosmotic conditions; in times of osmotic stress, the seryl residue is phosphorylated and enzyme activity decreases. [3] This regulation strategy also controls carbon flux from photosynthesis, as studies indicate the signal transduction pathway responsible for SPS activation responds to light stimulus. [5] [6] [7]

Allostery

Glucose 6-phosphate binds to an allosteric site, resulting in conformational changes to SPS that increase the enzyme's affinity for the glucosyl accepting substrate. Inorganic phosphate can also bind to this allosteric site, preventing glucose 6-phosphate activation of SPS. Like regulation via phosphorylation, this regulation strategy is also closely related to photosynthesis, as high rates of photosynthesis will deplete levels of inorganic phosphate and increase concentrations of glucose 6-phosphate in the chloroplast. [8] Overall, increased rates of photosynthesis will increase SPS activity.

Function

SPS plays a major role in partitioning carbon between sucrose and starch in photosynthetic and non-photosynthetic tissues, affecting the growth and development of the plant. [2] [8] [9] In ripening fruits, SPS is responsible for converting starch to sucrose and other soluble sugars. [10] [11] [12] Additionally, SPS is also active in cells that mostly degrade sucrose, participating in futile cycles that allow for large, rapid changes in sucrose flux. [3]

At low temperature, SPS activity and sucrose biosynthesis rates are increased. Sucrose accumulation is advantageous at low temperature, as sucrose is a form of energy storage that can be rapidly metabolized for respiratory purposes. Furthermore, increased amounts of sucrose can help the plant withstand freezing. [13]

Related Research Articles

<span class="mw-page-title-main">Phosphorylation</span> Chemical process of introducing a phosphate

In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.

<span class="mw-page-title-main">Hexokinase</span> Class of enzymes

A hexokinase is an enzyme that irreversibly phosphorylates hexoses, forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexokinase possesses the ability to transfer an inorganic phosphate group from ATP to a substrate.

<span class="mw-page-title-main">Phosphoglucomutase</span>

Phosphoglucomutase is an enzyme that transfers a phosphate group on an α-D-glucose monomer from the 1 to the 6 position in the forward direction or the 6 to the 1 position in the reverse direction.

Glycogenesis is the process of glycogen synthesis, in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle, in the liver, and also activated by insulin in response to high glucose levels.

<span class="mw-page-title-main">Glycogenin</span> Enzyme involved in converting glucose to glycogen

Glycogenin is an enzyme involved in converting glucose to glycogen. It acts as a primer, by polymerizing the first few glucose molecules, after which other enzymes take over. It is a homodimer of 37-kDa subunits and is classified as a glycosyltransferase.

<span class="mw-page-title-main">Glycogen synthase</span> Enzyme class, includes all types of glycogen/starch synthases

Glycogen synthase is a key enzyme in glycogenesis, the conversion of glucose into glycogen. It is a glycosyltransferase that catalyses the reaction of UDP-glucose and n to yield UDP and n+1.

<span class="mw-page-title-main">UTP—glucose-1-phosphate uridylyltransferase</span> Class of enzymes

UTP—glucose-1-phosphate uridylyltransferase also known as glucose-1-phosphate uridylyltransferase is an enzyme involved in carbohydrate metabolism. It synthesizes UDP-glucose from glucose-1-phosphate and UTP; i.e.,

<span class="mw-page-title-main">Fructose 2,6-bisphosphate</span> Chemical compound

Fructose 2,6-bisphosphate, abbreviated Fru-2,6-P2, is a metabolite that allosterically affects the activity of the enzymes phosphofructokinase 1 (PFK-1) and fructose 1,6-bisphosphatase (FBPase-1) to regulate glycolysis and gluconeogenesis. Fru-2,6-P2 itself is synthesized and broken down in either direction by the integrated bifunctional enzyme phosphofructokinase 2 (PFK-2/FBPase-2), which also contains a phosphatase domain and is also known as fructose-2,6-bisphosphatase. Whether the kinase and phosphatase domains of PFK-2/FBPase-2 are active or inactive depends on the phosphorylation state of the enzyme.

<span class="mw-page-title-main">Sucrose phosphorylase</span> Class of enzymes

Sucrose phosphorylase is an important enzyme in the metabolism of sucrose and regulation of other metabolic intermediates. Sucrose phosphorylase is in the class of hexosyltransferases. More specifically it has been placed in the retaining glycoside hydrolases family although it catalyzes a transglycosidation rather than hydrolysis. Sucrose phosphorylase catalyzes the conversion of sucrose to D-fructose and α-D-glucose-1-phosphate. It has been shown in multiple experiments that the enzyme catalyzes this conversion by a double displacement mechanism.

In enzymology, a 2-coumarate O-beta-glucosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an alpha,alpha-trehalose-phosphate synthase (UDP-forming) is an enzyme that catalyzes the chemical reaction

In enzymology, a cellulose synthase (GDP-forming) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cellulose synthase (UDP-forming)</span> Cellulose synthesizing enzyme in plants and bacteria

The UDP-forming form of cellulose synthase is the main enzyme that produces cellulose. Systematically, it is known as UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase in enzymology. It catalyzes the chemical reaction:

In enzymology, a dolichyl-phosphate beta-glucosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a NDP-glucose—starch glucosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Starch synthase</span> Enzyme family

In enzymology, a starch synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Sucrose synthase</span> Protein family

In enzymology, a sucrose synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-zeatin O-beta-D-glucosyltransferase is an enzyme that catalyzes the chemical reaction

Fructolysis refers to the metabolism of fructose from dietary sources. Though the metabolism of glucose through glycolysis uses many of the same enzymes and intermediate structures as those in fructolysis, the two sugars have very different metabolic fates in human metabolism. Unlike glucose, which is directly metabolized widely in the body, fructose is almost entirely metabolized in the liver in humans, where it is directed toward replenishment of liver glycogen and triglyceride synthesis. Under one percent of ingested fructose is directly converted to plasma triglyceride. 29% - 54% of fructose is converted in liver to glucose, and about a quarter of fructose is converted to lactate. 15% - 18% is converted to glycogen. Glucose and lactate are then used normally as energy to fuel cells all over the body.

<span class="mw-page-title-main">Glucansucrase</span> Enzyme

Glucansucrase is an enzyme in the glycoside hydrolase family GH70 used by lactic acid bacteria to split sucrose and use resulting glucose molecules to build long, sticky biofilm chains. These extracellular homopolysaccharides are called α-glucan polymers.

References

  1. 1 2 3 4 5 Chua TK, Bujnicki JM, Tan TC, Huynh F, Patel BK, Sivaraman J (April 2008). "The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode". The Plant Cell. 20 (4): 1059–72. doi:10.1105/tpc.107.051193. PMC   2390747 . PMID   18424616.
  2. 1 2 3 Levine M (2011). Topics in Dental Biochemistry . Springer. pp.  17–27. ISBN   978-3-540-88115-5.
  3. 1 2 3 Huber SC, Huber JL (June 1996). "ROLE AND REGULATION OF SUCROSE-PHOSPHATE SYNTHASE IN HIGHER PLANTS". Annual Review of Plant Physiology and Plant Molecular Biology. 47: 431–444. CiteSeerX   10.1.1.473.6911 . doi:10.1146/annurev.arplant.47.1.431. PMID   15012296.
  4. 1 2 3 Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A (February 2006). "Structures and mechanisms of glycosyltransferases". Glycobiology. 16 (2): 29R–37R. doi: 10.1093/glycob/cwj016 . PMID   16037492.
  5. Huber SC, Huber JL (August 1992). "Role of sucrose-phosphate synthase in sucrose metabolism in leaves". Plant Physiology. 99 (4): 1275–8. doi:10.1104/pp.99.4.1275. PMC   1080620 . PMID   16669032.
  6. McMichael RW, Bachmann M, Huber SC (July 1995). "Spinach Leaf Sucrose-Phosphate Synthase and Nitrate Reductase Are Phosphorylated/Inactivated by Multiple Protein Kinases in Vitro". Plant Physiology. 108 (3): 1077–1082. doi:10.1104/pp.108.3.1077. PMC   157459 . PMID   12228528.
  7. Galtier N, Foyer CH, Huber J, Voelker TA, Huber SC (February 1993). "Effects of Elevated Sucrose-Phosphate Synthase Activity on Photosynthesis, Assimilate Partitioning, and Growth in Tomato (Lycopersicon esculentum var UC82B)". Plant Physiology. 101 (2): 535–543. doi:10.1104/pp.101.2.535. PMC   160601 . PMID   12231708.
  8. 1 2 Doehlert DC, Huber SC (December 1983). "Regulation of Spinach Leaf Sucrose Phosphate Synthase by Glucose-6-Phosphate, Inorganic Phosphate, and pH". Plant Physiology. 73 (4): 989–94. doi:10.1104/pp.73.4.989. PMC   1066594 . PMID   16663357.
  9. Huber SC (April 1983). "Role of sucrose-phosphate synthase in partitioning of carbon in leaves". Plant Physiology. 71 (4): 818–21. doi:10.1104/pp.71.4.818. PMC   1066128 . PMID   16662913.
  10. Hubbard NL, Pharr DM, Huber SC (1991). "Sucrose phosphate synthase and other sucrose etabolizing enzymes in fruits of various species". Physiologia Plantarum. 82 (2): 191–196. doi:10.1111/j.1399-3054.1991.tb00080.x.
  11. Hubbard NL, Huber SC, Pharr DM (December 1989). "Sucrose Phosphate Synthase and Acid Invertase as Determinants of Sucrose Concentration in Developing Muskmelon (Cucumis melo L.) Fruits". Plant Physiology. 91 (4): 1527–34. doi:10.1104/pp.91.4.1527. PMC   1062217 . PMID   16667212.
  12. Miron D, Schaffer AA (February 1991). "Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Activities in Developing Fruit of Lycopersicon esculentum Mill. and the Sucrose Accumulating Lycopersicon hirsutum Humb. and Bonpl". Plant Physiology. 95 (2): 623–7. doi:10.1104/pp.95.2.623. PMC   1077577 . PMID   16668028.
  13. Guy CL, Huber JL, Huber SC (September 1992). "Sucrose phosphate synthase and sucrose accumulation at low temperature". Plant Physiology. 100 (1): 502–8. doi:10.1104/pp.100.1.502. JSTOR   4274654. PMC   1075578 . PMID   16652990.