Therevidae Temporal range: | |
---|---|
Thereva nobilitata female | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Diptera |
Superfamily: | Asiloidea |
Family: | Therevidae Newman, 1834 |
Subfamilies | |
The Therevidae are a family of flies of the superfamily Asiloidea commonly known as stiletto flies. The family contains about 1,600 described species worldwide, most diverse in arid and semiarid regions with sandy soils. The larvae are predators of insect larvae in soil. [1]
Adult Therevidae are small- to medium-sized with a body length of 2.4 to 18 mm and a hairy integument. The coloration ranges from shades of yellow to black, but commonly the background colour is masked by the tomentum.
The compound eyes are generally larger in males, which in many species are actually holoptic. Females have well-developed compound eyes, but are clearly dichoptic. There are three ocelli. The antennae are relatively short. The scape is elongated, the pedicel very short, and the first flagellomere is conical and elongated, the apex bearing a compound stylus with one to three segments. The scape and pedicel are pubescent;
In contrast to the related and confusingly similar family Asilidae, the labium in the Therevidae is not a piercing, predatory organ, but ends in two fleshy labella adapted to the sucking of liquid foods. Another difference is that, though Therevidae commonly have fluffy setae above the mouthparts, the setae are not stiff bristles like the protective chaetae comprising the mystax of most species of Asilidae. Furthermore, in the Asilidae the depression on the vertex between the eyes, tends to be more obvious than in the Therevidae.
The thorax is broad and moderately convex, with long bristles (macrotrichae). The legs are long and slender, with femora and tibiae bearing bristles; the tibiae are without apical spurs and the tarsi are provided with empodia or without the median pretarsal. The wings are well developed, hyaline or opaque, often with pigmentation of the veins located at the termination of the transverse and longitudinal veins.
The abdomen is tapered and elongated, typically 3 to 4 times as long as its broadest width when not extended for activities such as oviposition. Eight abdominal segments (uriti) are externally visible.
The wing venation is relatively complex but without a particular conformation to distinguish the Therevidae from other families of Asiloidea. The radius is divided into four branches, with R 2 +3 undivided. The branch R 4 is long and winding and reaches the costal margin, the branch R 5 terminates on the posterior border, so the second submarginal cell is open at the apex of the wing. The media is divided into four branches, all independent but with M 3 and M 4 convergent. The transverse medial vein closes the discal cell. This has an elongated shape and terminates at the apex with three angles from which the first three branches of media spring. The fourth branch, M 4 (or CuA 1 according to a different interpretation), originates from the apex of the posterior basal discal cell. The cubit and anal converge on a short common branch before reaching the apex.
The larva is apodous and eucephalic, cylindrical, very long and thin, and with tapered ends. The integument is smooth, white, or pink. The head capsule is well developed, but narrower than the other regions.
Knowledge of the biology of the Therevidae is limited and fragmented. The lifecycle is usually carried out in a single generation per year, although some European Therevidae have a cycle of two or more years. The overwintering stage is represented by the mature larva. The postembryonic development in known forms, five instars and pupation takes place in the spring.
The larvae, like those of other Asiloidea, have an entomophagous diet and they live as predators. They are generally found on dry, sandy soils and dry litter. Larvae also are located in other substrates such as decomposing organic matter and under the bark of trees. Among the prey are the larvae and pupae of Diptera, Coleoptera, and Lepidoptera. The observation of the behaviour of known forms highlights voracious feeding and agile movements. When exposed to light, the larvae of the Therevidae dig back into the substrate with rapid movements.
Adults feed mainly on nectar, honeydew, and pollen, but they occasionally feed on liquid secretions of animal or vegetable origin. They are found in various environments and can be found in streams, meadows, open woodlands, or, like many other Asiloidea, in dry and sandy places or on beaches. At rest, they choose various substrates according to the species: some species rest on the ground, others on rocks, vegetation, or intertidal debris. They are generally diurnal and move in short, quick flights. Although inhabiting semiarid regions, or possibly for that very reason, since that is where prey for their larvae are likely to be plentiful, adults are particularly attracted to water, generally remaining near pools or other sources of moisture.
The family Therevidae is little known and it resembles many other Brachycera, both in morphology and ethology. The taxonomic history of the Therevidae accordingly has undergone repeated revisions; in the past, many therevids were assigned to other families, and many other Brachycera were assigned to the Therevidae. Since the 1970s however, there has been a great deal of rationalisation of the taxonomy, particularly by Lyneborg and Irwin. Revision of the higher taxa, based on the phylogenetic cladistic relationships between various groups of Asiloidea has led to a better understanding of their ranks and interrelationships.
Originally the Therevidae sensu lato, were polyphyletic. It required the reassignment of some subfamilies to other families, together with adjustments to closely related families in the Asiloidea, to establish consistent phylogenetic relationships. The Therevidae now constitute a monophyletic clade that English-speaking dipterologists call the therevoid clade (clade of "Terevoidi"). This group has not been assigned a ranking at any taxonomic level above the rank of family, but for the present is recognised as a group of families within the superfamily Asiloidea. [2]
Therevoid clade
Therevoid clade |
| ||||||||||||||||||
Asiloidea |
| |||||||||||||||
Clade showing relationship of Asiloidea
At present, over 1, 600 species are known. After taxonomic revisions by Lyneborg (1976) and Winterston et al. (2001), the family is divided into four subfamilies, among which the most representative in size and diffusion is the Therevinae:
In addition to the 121 living genera are several extinct genera known from Cenozoic deposits including Dasystethos , Glaesorthactia , Kroeberiella , and Palaeopherocera , in doubt is Helicorhaphe.[ citation needed ] The oldest known member of the family is Cretothereva from the Early Cretaceous (Aptian) Crato Formation of Brazil. [3]
The habitat of the Therevidae is more varied than that of other Asiloidea, but as in Asiloidea, preferred ecosystems better suit the larvae, so these insects are more common in thickets of xerophilous plants (garrigue and maquis, in deserts and on sandy beaches.
The Therevidae are represented in all zoogeographical regions of the Earth. The Therevinae are present in all continents,[ citation needed ]with a lower frequency in the eastern region . The Phycinae have spread to the Afrotropical and the Holarctic. The Xestomyzinae are mainly Afrotropical. The Agapophytinae are endemic to the Australasian realm.
In Europe, only the subfamilies are represented:- Phycinae, with two genera, and Therevinae, with 15 genera. A total of 98 species are reported, two-thirds of which belong to the genus Thereva.
Cole, F.R., 1923. A revision of the North American two-winged flies of the family Therevidae. Proceedings of the U.S. National Museum, 62(4), 1-140.
Cole, F.R., 1960 Stiletto-flies of the genus Furcifera Kröber (Diptera: Therevidae). Annals of the Entomological Society of America, 53, 160-169.
Gaimari, S.D., & M.E. Irwin, 2000. Phylogeny, classification, and biogeography of the cycloteline Therevinae (Insecta: Diptera: Therevidae). Zoological Journal of the Linnean Society, 129, 129-240.
Irwin, M.E., & L. Lyneborg, 1981. The genera of Nearctic Therevidae. Illinois Natural History Bulletin, (1980) 32, 193-277.
Irwin, M.E., & D.W. Webb, 1992. Brasilian Therevidae (Diptera): a checklist and descriptions (sic) of species. Acta Amazonica, (1991) 21, 85-121.
Kröber, O., 1911. Die Thereviden Süd- und Mittelamerikas. Annales Musei Nationalis Hungarici, 9, 475-529. Keys genera, species.
Kröber, O., 1912. Die Thereviden der indo-australischen Region. Keys genera, species.
Kröber, O., 1913. Therevidae.Genera.Ins. Keys (then) world genera. Keys genera, species.
Kröber, O., 1914. Beiträge zur Kenntnis der Thereviden und Omphraliden. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten, (1913) 31, 29-74.
Kröber, O., 1924_1925. Therevidae. Fiegen palaerakt. Reg. 4 (26):1-60
Kröber, O., 1928. Neue und wenig bekannte Dipteren aus den Familien Omphralidae, Conopidae, und Therevidae. Konowia Zeitschrift für Systematische Insektenkunde, 7, 113-134.
Kröber, O., 1931. The Therevidae (Diptera) of South Africa. Ann. Transv. Mus.. 14:103-134. (see also Lyneborg).
Lyneborg, L. 1972. A revision of the Xestomyza-group of Therevidae. (Diptera). Annals of the Natal Museum 21: 297–376. Keys African genera, species.
Lyneborg, L. 1976. A revision of the Therevine stiletto-flies (Diptera: Therevidae) of the Ethiopian Region. Bull. British Mus. (Nat. Hist.). Entomology 33 (3): 191-346. Keys subfamilies and genera of Thervinae.
Malloch, J. R. 1932. Rhagionidae, Therevidae. British Museum (Natural History). Dept. of Entomology [eds] Diptera of Patagonia and South Chile, based mainly on material in the British Museum (Natural History). Part V. Fascicle 3. - Rhagionidae (Leptidae), Therevidae, Scenopenidae, Mydaidae, Asilidae, Lonchopteridae. pp. 199–293. Keys genera, species.
Mann, JS.1928-1933 Revisional notes on Australian Therevidae. Part 1. Australian Zoologist, 5, 151–. 194 (1928); Part 2 6:17-49 (1929); Part 3 7:325-344. (1933).
The Bombyliidae are a family of flies, commonly known as bee flies. Adults generally feed on nectar and pollen, some being important pollinators. Larvae are mostly parasitoids of other insects.
The Asiloidea comprise a very large superfamily insects in the order Diptera, the true flies. It has a cosmopolitan distribution, occurring worldwide. It includes the family Bombyliidae, the bee flies, which are parasitoids, and the Asilidae, the robber flies, which are predators of other insects.
Harold Oldroyd (24 December 1913 – 3 September 1978) was a British entomologist. He specialised in the biology of flies, and wrote many books, especially popular science that helped entomology to reach a broader public. His The Natural History of Flies is considered to be the "fly Bible". Although his speciality was the Diptera, he acknowledged that they are not a popular topic: "Breeding in dung, carrion, sewage and even living flesh, flies are a subject of disgust...not to be discussed in polite society". It was Oldroyd who proposed the idea of hyphenating the names of true flies (Diptera) to distinguish them from other insects with "fly" in their names. Thus, the "house-fly", "crane-fly" and "blow-fly" would be true flies, while the "dragonfly", "scorpion fly" and so on belong to other orders. He also debunked the calculation that a single pair of house-flies, if allowed to reproduce without inhibitions could, within nine months, number 5.6×1012 individuals, enough to cover the Earth to a thickness of 14.3 m (47 ft). Oldroyd calculated that such a layer would only cover Germany, but remarked "that is still a lot of flies".
The Conopidae, also known as the thick-headed flies, are a family of flies within the Brachycera suborder of Diptera, and the sole member of the superfamily Conopoidea. Flies of the family Conopidae are distributed worldwide in all the biogeographic realms except for the poles and many of the Pacific islands. About 800 species in 47 genera are described worldwide, about 70 of which are found in North America. The majority of conopids are black and yellow, or black and white, and often strikingly resemble wasps, bees, or flies of the family Syrphidae, themselves notable bee mimics. A conopid is most frequently found at flowers, feeding on nectar with its proboscis, which is often long.
The Asilidae are the robber fly family, also called assassin flies. They are powerfully built, bristly flies with a short, stout proboscis enclosing the sharp, sucking hypopharynx. The name "robber flies" reflects their expert predatory habits; they feed mainly or exclusively on other insects and, as a rule, they wait in ambush and catch their prey in flight.
The Acroceridae are a small family of odd-looking flies. They have a hump-backed appearance with a strikingly small head, generally with a long proboscis for accessing nectar. They are rare and not widely known. The most frequently applied common names are small-headed flies or hunch-back flies. Many are bee or wasp mimics. Because they are parasitoids of spiders, they also are sometimes known as spider flies.
The soldier flies are a family of flies. The family contains over 2,700 species in over 380 extant genera worldwide. Larvae are found in a wide array of locations, mostly in wetlands, damp places in soil, sod, under bark, in animal excrement, and in decaying organic matter. Adults are found near larval habitats. They are diverse in size and shape, though they commonly are partly or wholly metallic green, or somewhat wasplike mimics, marked with black and yellow or green and sometimes metallic. They are often rather inactive flies which typically rest with their wings placed one above the other over the abdomen.
Dolichopodidae, the long-legged flies, are a large, cosmopolitan family of true flies with more than 7,000 described species in about 230 genera. The genus Dolichopus is the most speciose, with some 600 species.
The Lonchaeidae are a family of acalyptrate flies commonly known as lance flies. About 500 described species are placed into 9 genera. These are generally small but robustly built flies with blue-black or metallic bodies. They are found, mainly in wooded areas, throughout the world with the exception of polar regions and New Zealand.
Rhagionidae or snipe flies are a small family of flies. They get their name from the similarity of their often prominent proboscis that looks like the beak of a snipe.
The Scenopinidae or window flies are a small family of flies (Diptera), distributed worldwide. In buildings, they are often taken at windows, hence the common name window flies.
Apsilocephalidae is a family of flies in the superfamily Asiloidea. It was historically treated as a subfamily within Therevidae, but placed in a separate family in 1991, and subsequently recognized as more distantly related. The family contains three extant genera and at least five extinct genera described from the fossil record.
Athericidae is a small family of flies known as water snipe flies or ibis flies. They used to be placed in the family Rhagionidae, but were removed by Stuckenberg in 1973. They are now known to be more closely related to Tabanidae. Species of Athericidae are found worldwide.
Austroleptis is a genus of snipe flies, and the sole genus in the family Austroleptidae; until 2010, it was placed in the family Rhagionidae. They are small to moderately sized flies of around 3 to 7.7 mm.
Diogmites is a genus of mainly neotropical flies in the family Asilidae or robber flies.
Neoitamus cyanurus, the common awl robberfly, is a species of 'robber fly' belonging to the family Asilidae.
Therevinae is a subfamily of stiletto flies in the family Therevidae. More than 20 genera and 470 described species are placed in the Therevinae.
Stichopogoninae is a subfamily of robber flies in the family Asilidae. There are about 14 genera and at least 230 described species in Stichopogoninae.
Cyclotelus is a genus of stiletto flies in the family Therevidae. There are more than 20 described species in Cyclotelus.
Heterotropus is a genus of bee flies in the family Bombyliidae. It is the only genus in the subfamily Heterotropinae, which formerly contained at least four genera. There are more than 45 species in the genus Heterotropus.
Media related to Therevidae at Wikimedia Commons