The Democracy Indices by V-Dem are democracy indices published by the V-Dem Institute that describe qualities of different democracies. It is published annually. [1] Datasets released by the V-Dem Institute include information on hundreds of indicator variables describing all aspects of government, especially on the quality of democracy, inclusivity, and other economic indicators.
In 2020, the V-Dem index had "more than 470 indicators, 82 mid-level indices, and 5 high-level indices covering 202 polities from the period of 1789–2019". [2]
0.900–1.000 0.800–0.899 0.700–0.799 0.600–0.699 | 0.500–0.599 0.400–0.499 0.300–0.399 0.200–0.299 | 0.100–0.199 0.000–0.099 No data |
As of 2022, the V-Dem Institute published 483 indicators and republishes 59 other indicators. [3] [4] V-Dem publishes five core indices with several other supplementary indices. The core indices are the electoral democracy index, the liberal democracy index, the participatory democracy index, the Deliberative Democracy Index and the egalitarian democracy index. [5]
V-Dem maintains the Regimes of the World index, which classifies governments using data from its other indices as either a closed autocracy, electoral autocracy, electoral democracy, or liberal democracy. It is heavily inspired by Robert Dahl's theory of polyarchy based on six institutional guarantees: elected officials, free and fair elections, freedom of expression, alternative sources of information, associational autonomy, and inclusive citizenship. [7]
Regimes where leaders are not de facto accountable to citizens and may lack multiparty or free and fair elections. Dahl's institutional prerequisites are not fulfilled. [7]
Governments which lack multiparty elections for the chief executive or the legislature, or lack any competition such as in one-party states. Legislative institutions are de facto undermined and electoral accountability is evaded. [7]
Governments where the chief executive, legislature, or both are accountable in de jure multiparty elections. They fall short of democratic standards due to irregularities, limitations on party competition, and violations of Dahl's prerequisites. They are closely related to theories of electoral authoritarianism and competitive authoritarianism. [7]
Regimes with de facto multiparty, free and fair elections. Dahl's institutional prerequisites are at least minimally fulfilled. [7]
Regimes that possess the bare minimum to be considered a democracy. They are "de-facto accountable to citizens through periodic elections", but are not liberal democracies and lack further entrenched individual and minority rights beyond the electoral sphere. Basic electoral democracies may not possess a fully developed rule of law, legislative and judicial oversight of the executive branch, protections against the "tyranny of the majority", and only minimal fulfillment of Robert Dahl's institutional prerequisites for democracy. [7]
Regimes that possess the rule of law and satisfy liberal principles. They provide checks and balances between legislative and judicial oversight of the executive branch, limitations on government to prevent the "tyranny of the majority", protect individual liberties, and provide equal access to and protection under the law. A fully developed rule of law is essential for liberal democracies, as it ensures decisions are implemented. It is sometimes referred to as a "Madisonian" democracy. [7]
The table below shows V-Dem Democracy rankings published for 2024. [8] [9] [10]
Country | Democracy Indices | Democracy Component Indices | ||||
---|---|---|---|---|---|---|
Electoral | Liberal | Liberal | Egalitarian | Participatory | Deliberative | |
![]() | 0.916 | 0.883 | 0.976 | 0.97 | 0.713 | 0.965 |
![]() | 0.895 | 0.85 | 0.961 | 0.901 | 0.634 | 0.868 |
![]() | 0.895 | 0.83 | 0.932 | 0.87 | 0.633 | 0.905 |
![]() | 0.894 | 0.847 | 0.962 | 0.937 | 0.881 | 0.984 |
![]() | 0.886 | 0.805 | 0.908 | 0.93 | 0.643 | 0.887 |
![]() | 0.884 | 0.839 | 0.962 | 0.959 | 0.656 | 0.986 |
![]() | 0.881 | 0.845 | 0.978 | 0.907 | 0.653 | 0.908 |
![]() | 0.87 | 0.817 | 0.952 | 0.91 | 0.59 | 0.873 |
![]() | 0.867 | 0.783 | 0.903 | 0.937 | 0.568 | 0.971 |
![]() | 0.866 | 0.799 | 0.93 | 0.824 | 0.635 | 0.938 |
![]() | 0.863 | 0.809 | 0.952 | 0.847 | 0.654 | 0.804 |
![]() | 0.859 | 0.805 | 0.952 | 0.885 | 0.641 | 0.931 |
![]() | 0.857 | 0.808 | 0.957 | 0.843 | 0.695 | 0.928 |
![]() | 0.848 | 0.769 | 0.912 | 0.777 | 0.815 | 0.842 |
![]() | 0.847 | 0.802 | 0.966 | 0.865 | 0.645 | 0.922 |
![]() | 0.844 | 0.787 | 0.949 | 0.719 | 0.644 | 0.94 |
![]() | 0.844 | 0.759 | 0.907 | 0.908 | 0.662 | 0.902 |
![]() | 0.842 | 0.744 | 0.887 | 0.699 | 0.632 | 0.753 |
![]() | 0.84 | 0.748 | 0.89 | 0.667 | 0.655 | 0.884 |
![]() | 0.839 | 0.762 | 0.918 | 0.862 | 0.624 | 0.851 |
![]() | 0.839 | 0.792 | 0.963 | 0.931 | 0.653 | 0.98 |
![]() | 0.838 | 0.765 | 0.922 | 0.866 | 0.661 | 0.822 |
![]() | 0.833 | 0.752 | 0.91 | 0.784 | 0.637 | 0.867 |
![]() | 0.831 | 0.751 | 0.91 | 0.799 | 0.609 | 0.891 |
![]() | 0.829 | 0.745 | 0.906 | 0.839 | 0.635 | 0.841 |
![]() | 0.822 | 0.761 | 0.944 | 0.893 | 0.62 | 0.893 |
![]() | 0.82 | 0.734 | 0.902 | 0.934 | 0.562 | 0.908 |
![]() | 0.803 | 0.705 | 0.882 | 0.902 | 0.748 | 0.865 |
![]() | 0.803 | 0.684 | 0.848 | 0.787 | 0.604 | 0.731 |
![]() | 0.801 | 0.712 | 0.9 | 0.617 | 0.628 | 0.944 |
![]() | 0.8 | 0.7 | 0.878 | 0.874 | 0.748 | 0.844 |
![]() | 0.799 | 0.734 | 0.936 | 0.877 | 0.679 | 0.809 |
![]() | 0.796 | 0.686 | 0.862 | 0.741 | 0.566 | 0.737 |
![]() | 0.786 | 0.67 | 0.848 | 0.842 | 0.298 | 0.926 |
![]() | 0.785 | 0.637 | 0.797 | 0.892 | 0.637 | 0.8 |
![]() | 0.774 | 0.651 | 0.839 | 0.902 | 0.566 | 0.831 |
![]() | 0.768 | 0.637 | 0.821 | 0.715 | 0.581 | 0.764 |
![]() | 0.757 | 0.649 | 0.86 | 0.724 | 0.527 | 0.703 |
![]() | 0.755 | 0.627 | 0.826 | 0.786 | 0.582 | 0.925 |
![]() | 0.752 | 0.584 | 0.754 | 0.766 | 0.648 | 0.37 |
![]() | 0.75 | 0.576 | 0.741 | 0.875 | 0.638 | 0.83 |
![]() | 0.741 | 0.659 | 0.901 | 0.83 | 0.305 | 0.948 |
![]() | 0.734 | 0.652 | 0.903 | 0.642 | 0.571 | 0.91 |
![]() | 0.733 | 0.549 | 0.72 | 0.569 | 0.552 | 0.715 |
![]() | 0.729 | 0.616 | 0.844 | 0.879 | 0.614 | 0.842 |
![]() | 0.729 | 0.631 | 0.872 | 0.856 | 0.61 | 0.809 |
![]() | 0.726 | 0.584 | 0.794 | 0.576 | 0.524 | 0.737 |
![]() | 0.723 | 0.619 | 0.862 | 0.779 | 0.624 | 0.681 |
![]() | 0.716 | 0.619 | 0.869 | 0.886 | 0.746 | 0.861 |
![]() | 0.715 | 0.617 | 0.869 | 0.808 | 0.601 | 0.773 |
![]() | 0.712 | 0.553 | 0.76 | 0.73 | 0.591 | 0.535 |
![]() | 0.705 | 0.45 | 0.571 | 0.471 | 0.595 | 0.818 |
![]() | 0.701 | 0.557 | 0.779 | 0.528 | 0.634 | 0.645 |
![]() | 0.673 | 0.565 | 0.841 | 0.673 | 0.565 | 0.671 |
![]() | 0.669 | 0.567 | 0.848 | 0.635 | 0.369 | 0.813 |
![]() | 0.669 | 0.522 | 0.76 | 0.585 | 0.583 | 0.611 |
![]() | 0.665 | 0.519 | 0.763 | 0.509 | 0.549 | 0.492 |
![]() | 0.664 | 0.486 | 0.699 | 0.671 | 0.594 | 0.617 |
![]() | 0.658 | 0.516 | 0.76 | 0.752 | 0.552 | 0.742 |
![]() | 0.651 | 0.446 | 0.639 | 0.366 | 0.754 | 0.442 |
![]() | 0.651 | 0.473 | 0.692 | 0.675 | 0.468 | 0.55 |
![]() | 0.646 | 0.508 | 0.77 | 0.603 | 0.669 | 0.837 |
![]() | 0.634 | 0.493 | 0.761 | 0.509 | 0.604 | 0.405 |
![]() | 0.634 | 0.507 | 0.784 | 0.666 | 0.588 | 0.751 |
![]() | 0.632 | 0.518 | 0.807 | 0.784 | 0.666 | 0.798 |
![]() | 0.629 | 0.445 | 0.67 | 0.679 | 0.621 | 0.32 |
![]() | 0.623 | 0.515 | 0.821 | 0.436 | 0.467 | 0.698 |
![]() | 0.623 | 0.414 | 0.61 | 0.802 | 0.411 | 0.688 |
![]() | 0.617 | 0.462 | 0.72 | 0.702 | 0.586 | 0.889 |
![]() | 0.615 | 0.478 | 0.755 | 0.76 | 0.581 | 0.724 |
![]() | 0.613 | 0.404 | 0.607 | 0.567 | 0.464 | 0.811 |
![]() | 0.597 | 0.469 | 0.768 | 0.327 | 0.594 | 0.594 |
![]() | 0.594 | 0.478 | 0.786 | 0.675 | 0.478 | 0.427 |
![]() | 0.58 | 0.482 | 0.823 | 0.51 | 0.585 | 0.745 |
![]() | 0.579 | 0.388 | 0.618 | 0.312 | 0.516 | 0.458 |
![]() | 0.576 | 0.314 | 0.461 | 0.593 | 0.628 | 0.473 |
![]() | 0.564 | 0.423 | 0.714 | 0.584 | 0.48 | 0.705 |
![]() | 0.563 | 0.374 | 0.61 | 0.596 | 0.588 | 0.587 |
![]() | 0.561 | 0.454 | 0.783 | 0.826 | 0.541 | 0.899 |
![]() | 0.549 | 0.432 | 0.762 | 0.521 | 0.585 | 0.806 |
![]() | 0.541 | 0.382 | 0.658 | 0.408 | 0.537 | 0.687 |
![]() | 0.517 | 0.362 | 0.643 | 0.709 | 0.538 | 0.673 |
![]() | 0.516 | 0.414 | 0.772 | 0.706 | 0.439 | 0.789 |
![]() | 0.51 | 0.392 | 0.732 | 0.603 | 0.65 | 0.877 |
![]() | 0.508 | 0.342 | 0.613 | 0.653 | 0.517 | 0.614 |
![]() | 0.507 | 0.396 | 0.742 | 0.673 | 0.537 | 0.418 |
![]() | 0.505 | 0.251 | 0.397 | 0.438 | 0.617 | 0.423 |
![]() | 0.502 | 0.315 | 0.553 | 0.507 | 0.613 | 0.659 |
![]() | 0.501 | 0.329 | 0.592 | 0.754 | 0.49 | 0.541 |
![]() | 0.496 | 0.389 | 0.736 | 0.653 | 0.402 | 0.746 |
![]() | 0.492 | 0.368 | 0.698 | 0.713 | 0.574 | 0.8 |
![]() | 0.491 | 0.315 | 0.568 | 0.675 | 0.516 | 0.378 |
![]() | 0.483 | 0.326 | 0.606 | 0.538 | 0.592 | 0.811 |
![]() | 0.48 | 0.328 | 0.615 | 0.726 | 0.507 | 0.751 |
![]() | 0.461 | 0.384 | 0.784 | 0.461 | 0.514 | 0.507 |
![]() | 0.44 | 0.348 | 0.726 | 0.638 | 0.584 | 0.904 |
![]() | 0.436 | 0.318 | 0.654 | 0.635 | 0.534 | 0.309 |
![]() | 0.435 | 0.308 | 0.633 | 0.314 | 0.571 | 0.526 |
![]() | 0.434 | 0.258 | 0.496 | 0.805 | 0.508 | 0.751 |
![]() | 0.432 | 0.251 | 0.485 | 0.537 | 0.598 | 0.74 |
![]() | 0.419 | 0.271 | 0.553 | 0.307 | 0.518 | 0.59 |
![]() | 0.417 | 0.221 | 0.419 | 0.32 | 0.494 | 0.389 |
![]() | 0.415 | 0.368 | 0.82 | 0.753 | 0.548 | 0.681 |
![]() | 0.414 | 0.343 | 0.752 | 0.805 | 0.132 | 0.742 |
![]() | 0.398 | 0.291 | 0.635 | 0.425 | 0.521 | 0.629 |
![]() | 0.389 | 0.289 | 0.646 | 0.483 | 0.356 | 0.371 |
![]() | 0.389 | 0.233 | 0.486 | 0.638 | 0.575 | 0.791 |
![]() | 0.355 | 0.173 | 0.355 | 0.622 | 0.463 | 0.724 |
![]() | 0.351 | 0.228 | 0.524 | 0.459 | 0.438 | 0.594 |
![]() | 0.348 | 0.207 | 0.463 | 0.379 | 0.421 | 0.557 |
![]() | 0.34 | 0.164 | 0.346 | 0.271 | 0.153 | 0.339 |
![]() | 0.339 | 0.092 | 0.137 | 0.264 | 0.451 | 0.268 |
![]() | 0.333 | 0.183 | 0.411 | 0.619 | 0.397 | 0.373 |
![]() | 0.333 | 0.135 | 0.266 | 0.321 | 0.542 | 0.579 |
![]() | 0.327 | 0.133 | 0.269 | 0.418 | 0.377 | 0.549 |
![]() | 0.315 | 0.22 | 0.544 | 0.736 | 0.552 | 0.494 |
![]() | 0.313 | 0.199 | 0.48 | 0.223 | 0.499 | 0.529 |
![]() | 0.304 | 0.171 | 0.406 | 0.495 | 0.514 | 0.456 |
![]() | 0.302 | 0.1 | 0.186 | 0.284 | 0.302 | 0.309 |
![]() | 0.299 | 0.261 | 0.69 | 0.67 | 0.38 | 0.753 |
![]() | 0.292 | 0.266 | 0.716 | 0.613 | 0.148 | 0.433 |
![]() | 0.288 | 0.117 | 0.255 | 0.539 | 0.422 | 0.182 |
![]() | 0.286 | 0.14 | 0.33 | 0.512 | 0.239 | 0.238 |
![]() | 0.282 | 0.107 | 0.228 | 0.602 | 0.521 | 0.425 |
![]() | 0.28 | 0.149 | 0.365 | 0.465 | 0.318 | 0.35 |
![]() | 0.273 | 0.274 | 0.772 | 0.577 | 0.302 | 0.876 |
![]() | 0.272 | 0.201 | 0.536 | 0.477 | 0.415 | 0.657 |
![]() | 0.272 | 0.134 | 0.326 | 0.539 | 0.291 | 0.5 |
![]() | 0.27 | 0.156 | 0.392 | 0.337 | 0.547 | 0.578 |
![]() | 0.263 | 0.098 | 0.216 | 0.419 | 0.337 | 0.472 |
![]() | 0.263 | 0.247 | 0.703 | 0.553 | 0.431 | 0.811 |
![]() | 0.259 | 0.116 | 0.275 | 0.674 | 0.211 | 0.445 |
![]() | 0.254 | 0.117 | 0.285 | 0.359 | 0.542 | 0.441 |
![]() | 0.25 | 0.121 | 0.304 | 0.544 | 0.377 | 0.378 |
![]() | 0.24 | 0.18 | 0.509 | 0.646 | 0.575 | 0.737 |
![]() | 0.229 | 0.155 | 0.438 | 0.646 | 0.62 | 0.58 |
![]() | 0.218 | 0.079 | 0.192 | 0.128 | 0.259 | 0.592 |
![]() | 0.215 | 0.078 | 0.19 | 0.435 | 0.196 | 0.422 |
![]() | 0.214 | 0.117 | 0.323 | 0.541 | 0.469 | 0.177 |
![]() | 0.204 | 0.054 | 0.116 | 0.202 | 0.342 | 0.321 |
![]() | 0.202 | 0.09 | 0.24 | 0.521 | 0.39 | 0.588 |
![]() | 0.201 | 0.068 | 0.2 | 0.323 | 0.243 | 0.293 |
![]() | 0.199 | 0.147 | 0.442 | 0.618 | 0.543 | 0.733 |
![]() | 0.197 | 0.049 | 0.101 | 0.263 | 0.492 | 0.023 |
![]() | 0.196 | 0.106 | 0.303 | 0.375 | 0.234 | 0.754 |
![]() | 0.186 | 0.056 | 0.133 | 0.206 | 0.207 | 0.183 |
![]() | 0.186 | 0.129 | 0.391 | 0.328 | 0.214 | 0.304 |
![]() | 0.178 | 0.049 | 0.114 | 0.336 | 0.11 | 0.094 |
![]() | 0.178 | 0.055 | 0.138 | 0.753 | 0.17 | 0.286 |
![]() | 0.175 | 0.054 | 0.133 | 0.34 | 0.102 | 0.093 |
![]() | 0.175 | 0.072 | 0.199 | 0.264 | 0.322 | 0.132 |
![]() | 0.174 | 0.05 | 0.12 | 0.197 | 0.144 | 0.136 |
![]() | 0.174 | 0.124 | 0.382 | 0.614 | 0.499 | 0.659 |
![]() | 0.174 | 0.14 | 0.443 | 0.571 | 0.388 | 0.189 |
![]() | 0.172 | 0.056 | 0.143 | 0.371 | 0.376 | 0.109 |
![]() | 0.169 | 0.133 | 0.421 | 0.736 | 0.142 | 0.15 |
![]() | 0.169 | 0.126 | 0.396 | 0.311 | 0.269 | 0.71 |
![]() | 0.167 | 0.092 | 0.275 | 0.473 | 0.092 | 0.324 |
![]() | 0.161 | 0.036 | 0.081 | 0.764 | 0.146 | 0.06 |
![]() | 0.161 | 0.075 | 0.219 | 0.436 | 0.395 | 0.22 |
![]() | 0.161 | 0.072 | 0.21 | 0.126 | 0.143 | 0.104 |
![]() | 0.156 | 0.129 | 0.42 | 0.525 | 0.391 | 0.218 |
![]() | 0.153 | 0.019 | 0.022 | 0.271 | 0.295 | 0.017 |
![]() | 0.149 | 0.033 | 0.076 | 0.289 | 0.075 | 0.039 |
![]() | 0.145 | 0.054 | 0.155 | 0.23 | 0.194 | 0.085 |
![]() | 0.135 | 0.038 | 0.103 | 0.188 | 0.291 | 0.157 |
![]() | 0.134 | 0.102 | 0.339 | 0.428 | 0.386 | 0.164 |
![]() | 0.13 | 0.097 | 0.323 | 0.241 | 0.379 | 0.202 |
![]() | 0.127 | 0.047 | 0.142 | 0.087 | 0.166 | 0.132 |
![]() | 0.124 | 0.052 | 0.158 | 0.385 | 0.115 | 0.158 |
![]() | 0.103 | 0.078 | 0.27 | 0.45 | 0.086 | 0.298 |
![]() | 0.095 | 0.053 | 0.18 | 0.405 | 0.212 | 0.113 |
![]() | 0.087 | 0.08 | 0.284 | 0.395 | 0.105 | 0.387 |
![]() | 0.083 | 0.014 | 0.033 | 0.31 | 0.153 | 0.016 |
![]() | 0.083 | 0.016 | 0.041 | 0.21 | 0.34 | 0.195 |
![]() | 0.081 | 0.016 | 0.044 | 0.077 | 0.027 | 0.073 |
![]() | 0.073 | 0.036 | 0.125 | 0.302 | 0.1 | 0.227 |
![]() | 0.068 | 0.009 | 0.02 | 0.322 | 0.024 | 0.071 |
![]() | 0.015 | 0.047 | 0.187 | 0.449 | 0.081 | 0.258 |
The Digital Society Project is a subset of indicators on V-Dem's survey that asks questions about social media's political status and the internet. [6] Specifically, the Digital Society Project measures a range of questions related to internet censorship, misinformation online, and internet shutdowns. [12] This annual report includes 35 indicators assessing five areas: disinformation, digital media freedom, state regulation of digital media, the polarization of online media, and online social cleavages. [13] [14] It has been updated each year starting in 2019, with data covering from 2000–2021. [13] Similar to other expert analyses like Freedom House, these data are more prone to false positives when compared with remotely sensed data, such as that from Access Now or the OpenNet Initiative. [14]
Political scientist Jonas Wolff criticized V-Dem for gradually abandoning a pluralist conceptualization of democracy. According to him, V-Dem has moved away from its original emphasis on the conceptual varieties of democracy and adopted an uncontested view of democracy as liberal democracy while also ignoring the limitations of liberal democracy. [18]
The V-Dem dataset does not cover some countries, namely: Andorra, Antigua and Barbuda, Bahamas, Belize, Brunei, Dominica, Federated States of Micronesia, Grenada, Kiribati, Liechtenstein, Marshall Islands, Monaco, Nauru, Palau, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino, Tonga, Tuvalu, and the Vatican.