VVT-i

Last updated
Cutaway view of Variable Valve Timing with intelligence on a ZR engine in Techniquest Glyndwr Toyota ZR engine cutaways valve gear.jpg
Cutaway view of Variable Valve Timing with intelligence on a ZR engine in Techniquest Glyndŵr

VVT-i, or Variable Valve Timing with intelligence, is an automobile variable valve timing technology developed by Toyota. It was introduced in 1995 with the 2JZ-GE engine found in the JZS155 Toyota Crown and Crown Majesta.

Contents

The VVT-i system replaces the previous Toyota VVT system introduced in 1991 with the five-valve per cylinder 4A-GE "Silver Top" engine found in the AE101 Corolla Levin and Sprinter Trueno. The VVT system is a 2-stage hydraulically controlled cam phasing system.

VVT-i varies the timing of the intake valves by adjusting the relationship between the camshaft drive (belt or chain) and intake camshaft. Engine oil pressure is applied to an actuator to adjust the camshaft position. Adjustments in the overlap time between the exhaust valve closing and intake valve opening result in improved engine efficiency. [1] Variants of the system, including VVTL-i, Dual VVT-i, VVT-iE, VVT-iW and Valvematic, have followed.

VVTL-i

The 2ZZ-GE engine, the first and only engine to feature VVTL-i Toyota 2ZZ-GE.JPG
The 2ZZ-GE engine, the first and only engine to feature VVTL-i

VVTL-i (Variable Valve Timing and Lift intelligent system) (also sometimes denoted as VVT-iL or Variable Valve Timing and Intelligence with Lift) is an enhanced version of VVT-i that can alter valve lift (and duration) as well as valve timing. In the case of the 16-valve 2ZZ-GE , the engine head resembles a typical DOHC design, featuring separate cams for intake and exhaust and featuring two intake and two exhaust valves (four total) per cylinder. Unlike a conventional design, each camshaft has two lobes per cylinder, one optimized for lower rpm operation and one optimized for high rpm operation, with higher lift and longer duration. Each valve pair is controlled by one rocker arm, which is operated by the camshaft. Each rocker arm has a slipper follower mounted to the rocker arm with a spring, allowing the slipper-follower to freely move up and down with the high lobe without affecting the rocker arm. When the engine is operating below 6000-7000 rpm (dependent on year, car, and ECU installed), the lower lobe is operating the rocker arm and thus the valves, and the slipper-follower is freewheeling next to the rocker arm. When the engine is operating above the lift engagement point, the ECU activates an oil pressure switch which pushes a sliding pin under the slipper-follower on each rocker arm. The rocker arm is now locked into the slipper-follower's movements and thus follows the movement of the high rpm cam lobe and will operate with the high rpm cam profile until the pin is disengaged by the ECU. The lift system is similar in principle to Honda's VTEC operation.

The system was introduced in the 2ZZ-GE found in the 1999 Toyota Celica. Toyota has ceased production of its VVTL-i engines in most markets, because the engine does not meet Euro IV specifications for emissions regulations. As a result, this system has been discontinued on some Toyota models, including the Corolla T-Sport (Europe), Corolla Sportivo (Australia), Celica, Corolla XRS, Matrix XRS, and the Pontiac Vibe GT, all of which had the 2ZZ-GE engine fitted. The Lotus Elise and Exige continued to offer the 2ZZ-GE engine until 2011, with the Exige offering the engine with a supercharger.

Dual VVT-i

The BEAMS 3S-GE 5th-generation engine ("Black Top"), the first to feature Dual VVT-i BEAMS 3S-GE Black Top.JPG
The BEAMS 3S-GE 5th-generation engine ("Black Top"), the first to feature Dual VVT-i

The Dual VVT-i system adjusts timing on both intake and exhaust camshafts. It was introduced in 1998 on the RS200 Altezza's 3S-GE engine. Dual VVT-i is also found in Toyota's 3.5-litre 2GR-FE V6 engine, first appearing on the 2005 Avalon. This engine can be found on numerous Toyota and Lexus models.

By adjusting the valve timing, engine start and stop occurs almost unnoticeably at minimum compression. Fast heating of the catalytic converter to its light-off temperature is possible, thereby reducing hydrocarbon emissions considerably.

Most Toyota engines including the 1LR-GUE (V10, used in the Lexus LFA), UR engines (V8), GR engines (V6), AR engines (large I4), ZR engines (medium I4), and NR engines (small I4) use this technology.

VVT-iE

The 1UR-FSE engine, the first to feature VVT-iE Lexus 1UR-FSE.jpg
The 1UR-FSE engine, the first to feature VVT-iE

VVT-iE (Variable Valve Timing - intelligent by Electric motor) is a version of Dual VVT-i that uses an electrically operated actuator to adjust and maintain intake camshaft timing. [2] The exhaust camshaft timing is still controlled using a hydraulic actuator. This form of variable valve timing technology was developed initially for Lexus vehicles. This system was introduced on the 1UR-FSE engine in the 2007 Lexus LS 460.

The electric motor in the actuator spins together with the intake camshaft as the engine runs. To maintain camshaft timing, the actuator motor will operate at the same speed as the camshaft. To advance the camshaft timing, the actuator motor will rotate slightly faster than the camshaft speed. To retard camshaft timing, the actuator motor will rotate slightly slower than camshaft speed. The speed difference between the actuator motor and camshaft timing is used to operate a mechanism that varies the camshaft timing. The benefit of the electric actuation is enhanced response and accuracy at low engine speeds and at lower temperatures as well as a greater total range of adjustment. The combination of these factors allows more precise control, resulting in an improvement of both fuel economy, engine output and emissions performance.

VVT-iW

The 8AR-FTS engine, the first to feature VVT-iW 2018 Toyota Crown 8AR-FTS.jpg
The 8AR-FTS engine, the first to feature VVT-iW

VVT-iW (Variable Valve Timing - intelligent Wide) was introduced with the 2.0L turbocharged direct-injected 8AR-FTS fitted to the Lexus NX 200t. VVT-iW uses VVT-iW on the intake valves and VVT-i on the exhaust valves. The intake cam has mid-position cam lock mechanism that retards the continuously variable timing. It offers expanded valve opening angles (Wide) which enables the engine to operate in a modified-Atkinson cycle at low rpm for improved economy and lower emissions, and in the Otto cycle at high rpm for better performance, while delivering high torque throughout the rpm band. [3]

Valvematic

The 3ZR-FAE engine, the first to feature the Valvematic system 2020 Toyota Voxy 2.0 ZRR80R 3ZR-FAE engine (20201113).jpg
The 3ZR-FAE engine, the first to feature the Valvematic system

The Valvematic system offers continuous adjustment to valve lift and timing and improves fuel efficiency by controlling the fuel/air intake using valve control rather than conventional throttle plate control. [4] The technology made its first appearance in 2007 with the 3ZR-FAE engine in the Noah [5] and later in early-2009 in the Avensis. This system is simpler in design compared to Valvetronic and VVEL, allowing the cylinder head to remain at the same height.

VVT-i Oil Supply Hose Issues

In 2010, Toyota USA announced a Limited Service Campaign (LSC 90K) to replace the rubber portion of the oil supply hose for the VVT-i actuator on the 2GR-FE (V6) engine, which were found to be defective. In all, approximately 1.6 million vehicles manufactured prior to 2008 were affected. The defective oil supply hoses were prone to degradation and eventual rupture, causing oil to rapidly leak and resulting in permanent engine damage.

In 2014, the LSC 90K Campaign was extended to 31 December 2021 [6] on 117,500 Toyota brand vehicles that were "missed" during the initial campaign.

See also

Related Research Articles

<span class="mw-page-title-main">Camshaft</span> Mechanical component that converts rotational motion to reciprocal motion

A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion. Camshafts are used in piston engines, mechanically controlled ignition systems and early electric motor speed controllers.

<span class="mw-page-title-main">VTEC</span> Automobile variable valve timing technology

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

<span class="mw-page-title-main">Variable valve timing</span> Process of altering the timing of a valve lift event

Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

<span class="mw-page-title-main">Nissan VVL engine</span> Reciprocating internal combustion engine

Nissan Ecology Oriented Variable Valve Lift and Timing is an automobile variable valve timing technology developed by Nissan. VVL varies the duration, and lift of valves by using hydraulic pressure switch between two different sets of camshaft lobes. VVT varies the valve timing throughout the RPM range. Together they function similarly to Honda's VTEC system.

VarioCam is an automobile variable valve timing technology developed by Porsche. VarioCam varies the timing of the intake valves by adjusting the tension on the timing chain connecting the intake and exhaust camshafts. VarioCam was first used on the 1992 3.0 L engine in the Porsche 968.

<span class="mw-page-title-main">MIVEC</span> Automobile variable valve timing technology

MIVEC (Mitsubishi Innovative Valve timing Electronic Control system) is the brand name of a variable valve timing (VVT) engine technology developed by Mitsubishi Motors. MIVEC, as with other similar systems, varies the timing of the intake and exhaust camshafts which increases the power and torque output over a broad engine speed range while also being able to help spool a turbocharger more quickly and accurately.

<span class="mw-page-title-main">Variable camshaft timing</span> Automobile variable valve timing technology

Variable camshaft timing (VCT) is an automobile variable valve timing technology developed by Ford. It allows for more optimum engine performance, reduced emissions, and increased fuel efficiency compared to engines with fixed camshafts. It uses electronically controlled hydraulic valves that direct high pressure engine oil into the camshaft phaser cavity. These oil control solenoids are bolted into the cylinder heads towards the front of the engine near the camshaft phasers. The powertrain control module (PCM) transmits a signal to the solenoids to move a valve spool that regulates the flow of oil to the phaser cavity. The phaser cavity changes the valve timing by rotating the camshaft slightly from its initial orientation, which results in the camshaft timing being advanced. The PCM adjusts the camshaft timing depending on factors such as engine load and RPM.

<span class="mw-page-title-main">Toyota JZ engine</span> Reciprocating internal combustion engine

The Toyota JZ engine family is a series of inline-6 automobile engines produced by Toyota Motor Corporation. As a replacement for the M-series inline-6 engines, the JZ engines were 24-valve DOHC engines in 2.5- and 3.0-litre versions.

<span class="mw-page-title-main">Toyota ZZ engine</span> Reciprocating internal combustion engine

The Toyota ZZ engine family is a straight-4 piston engine series. The ZZ series uses a die-cast aluminium engine block with thin press-fit cast iron cylinder liners, and aluminium DOHC 4-valve cylinder heads. The camshafts are chain-driven. The two 1.8 L members of the family, the 1ZZ and 2ZZ, use different bore and stroke. The former was optimised for economy, with torque emphasised in lower revolutions per minute operating range, while the latter is a "square" design optimised for high-RPM torque, yielding higher peak power. The ZZ family replaced the extremely popular cast-iron block 4A engines.

<span class="mw-page-title-main">Toyota AZ engine</span> Reciprocating internal combustion engine

The Toyota AZ engine family is a straight-4 piston engine series. The AZ series uses an aluminium engine block with cast iron cylinder liners and aluminium DOHC cylinder head. The engine series features many advanced technologies including slant-squish combustion chambers, offset cylinder and crank centers, and the VVT-i continuously variable intake valve timing system. The aluminium engine measures 626 mm (24.6 in) long, 608 mm (23.9 in) wide, and 681 mm (26.8 in) tall.

<span class="mw-page-title-main">Toyota GR engine</span> Reciprocating internal combustion engine

The Toyota GR engine family is a gasoline, open-deck, piston V6 engine series. The GR series has a 60° die-cast aluminium block and aluminium DOHC cylinder heads. This engine series also features 4 valves per cylinder, forged steel connecting rods and crankshaft, one-piece cast camshafts, a timing chain, and a cast aluminium lower intake manifold. Some variants use multi-port fuel injection, some have D4 direct injection, and others have a combination of direct injection and multi-port fuel injection or D4-S.

<span class="mw-page-title-main">Toyota S engine</span> Reciprocating internal combustion engine

The Toyota S Series engines are a family of straight-four petrol engines with displacements between 1.8 and 2.2 litres, produced by Toyota Motor Corporation from January 1980 to August 2007. The S series has cast iron engine blocks and aluminium cylinder heads.

<span class="mw-page-title-main">Valvetrain</span> Mechanical system in an internal combustion engine

A valvetrain or valve train is a mechanical system that controls the operation of the intake and exhaust valves in an internal combustion engine. The intake valves control the flow of air/fuel mixture into the combustion chamber, while the exhaust valves control the flow of spent exhaust gasses out of the combustion chamber once combustion is completed.

<span class="mw-page-title-main">Toyota UR engine</span> Type of engine made by Toyota

The Toyota UR engine family is a 32-valve dual overhead camshaft V8 piston engine series which was first introduced in 2006, as the UZ series it replaced began phasing out. Production started with the 1UR-FSE engine with D-4S direct injection for the 2007 Lexus LS. The series launched with a die-cast aluminum engine block, aluminum cylinder heads and magnesium cylinder head covers. All UR engines feature variable valve timing for both intake and exhaust cams or Dual VVT-i. Timing chains are used to drive the camshafts. The UR engine has been produced in 4.6, 5.0, and 5.7-liter displacement versions.

<span class="mw-page-title-main">Mitsubishi 4B1 engine</span> Reciprocating internal combustion engine

The Mitsubishi 4B1 engine is a range of all-alloy straight-4 piston engines built at Mitsubishi's Japanese "World Engine" powertrain plant in Shiga on the basis of the Global Engine Manufacturing Alliance (GEMA). Although the basic designs of the various engines are the same, their exact specifications are individually tailored for each partner. The cylinder block and other basic structural parts of the engine were jointly developed by the GEMA companies, but the intake and exhaust manifolds, the cylinder head's intake and exhaust ports, and other elements related to engine tuning were independently developed by Mitsubishi.

<span class="mw-page-title-main">Variable Valve Event and Lift</span> Automobile variable valve timing technology

Nissan Variable Valve Event and Lift is an automobile variable valve timing technology developed by Nissan.

<span class="mw-page-title-main">Acoustic Control Induction System</span> Variable-length intake manifold system designed by Toyota

Acoustic Control Induction System, or ACIS, is an implementation of a variable-length intake manifold system designed by Toyota.

<span class="mw-page-title-main">Toyota NR engine</span> Reciprocating internal combustion engine

The Toyota NR engine family is a series of small inline-four piston engines designed and manufactured by Toyota, with capacities between 1.2 and 1.5 litres.

Variable valve timing (VVT) is a system for varying the valve opening of an internal combustion engine. This allows the engine to deliver high power, but also to work tractably and efficiently at low power. There are many systems for VVT, which involve changing either the relative timing, duration or opening of the engine's inlet and exhaust valves.

Variable valve lift (VVL) is an automotive piston engine technology which varies the height a valve opens in order to improve performance, fuel economy or emissions. There are two main types of VVL: discrete, which employs fixed valve lift amounts, and continuous, which is able to vary the amount of lift. Continuous valve lift systems typically allow for the elimination of the throttle valve.

References

  1. "Variable Valve Timing Mechanism on Toyota". YouTube. 2006-09-10. Retrieved 2009-06-29.
  2. "Lexus LS engine page". Archived from the original on 2009-05-03. Retrieved 2009-09-29.
  3. "Camry in Europe features new 2.0L engine with VVT-iW." Green Car Congress. 2014-09-05. Retrieved 2016-06-27.
  4. "Toyota Develops Next-generation Engine Valve Mechanism — 'Valvematic' Achieves High Fuel Efficiency and Dynamic Performance —". TOYOTA. 2007-06-12. Archived from the original on 2010-01-21. Retrieved 2009-06-29.
  5. Nunez, Alex (2011-07-01). "Toyota Noah / Voxy: Valvematic for the people (movers)". Autoblog.com. Retrieved 2009-06-29.
  6. "Extension of Limited Service Campaign (LSC) 90K" (PDF). US: Toyota. Retrieved 2016-10-08.