Clinical data | |
---|---|
Other names | Antalarmin |
ATC code |
|
Legal status | |
Legal status |
|
Identifiers | |
| |
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
ChemSpider | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
Chemical and physical data | |
Formula | C24H34N4 |
Molar mass | 378.564 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Antalarmin (CP-156,181) is a drug that acts as a CRH1 antagonist.
Corticotropin-releasing hormone (CRH), also known as Corticotropin-releasing factor, is an endogenous peptide hormone released in response to various triggers such as chronic stress and drug addiction. Such triggers result in the release of corticotropin (ACTH), another hormone involved in the physiological response to stress. Chronic release of CRH and ACTH is believed to be directly or indirectly involved in many of the harmful physiological effects of chronic stress, such as excessive glucocorticoid release, stomach ulcers, anxiety, diabetes mellitus, osteoporosis, depression, and development of high blood pressure and consequent cardiovascular problems. [1]
Antalarmin is a non-peptide drug that blocks the CRH1 receptor, and, as a consequence, reduces the release of ACTH in response to chronic stress. [2] This has been demonstrated in animals to reduce the behavioral responses to stressful situations, [3] and it is proposed that Antalarmin itself, or more likely newer CRH1 antagonist drugs still under development, [4] could be useful for reducing the adverse health consequences of chronic stress in humans, as well as having possible uses in the treatment of conditions such as anxiety, depression, and drug addiction. [5]
The synthesis of CP-154,526, a non-peptide antagonist of the CRH1 receptor, was first described in 1997. [6] Antalarmin, or CP-156,181, is a close analog that is highly structurally similar and has been shown to be easier to synthesize. [2] The findings from several chemical, pharmacokinetic and pharmacological studies indicate that the two compounds possess very similar properties.
As shown in Table 1, Adenylyl cyclase and cAMP assays were used in various functional studies to determine the amount of cAMP inhibition by two CRH1 receptor antagonists: Antalarmin and CP-154,526.
Tissue | Type of Assay | Compound | Parameter |
---|---|---|---|
Human SH-SY5Y (Neuroblastoma) | cAMP | Antalarmin | pKb = 9.19 [7] |
Human Y79 Cells (Retinoblastoma) | cAMP | Antalarmin | IC50 = 0.8 nM [8] |
Human SH-SY5Y | cAMP | CP-154,526 | pKb = 7.76 [7] |
Rat Cortex | Cyclase | CP-154,526 | Ki = 3.7 nM [9] |
Several receptor binding studies have shown that Antalarmin and CP-154,526 have high affinity for CRH1 receptors, with very similar profiles. Table 2 shows the binding affinities of each compound in various cell lines.
Tissue | Compound | Ki (nM) | IC50 (nM) |
---|---|---|---|
Rat Pituitary | Antalarmin | 1.9 [2] | 0.04 [10] |
Rat Frontal Cortex | Antalarmin | 1.4 [2] | |
Human Clone | Antalarmin | 6 [8] | 5 [10] |
Rat Pituitary | CP-154,526 | 1.4 [9] | |
Rat Cortex | CP-154,526 | 5.7 [9] | |
Human Clone | CP-154,526 | 10 [11] |
The pharmacokinetics of CP-154,526, a close analog of Antalarmin, have been investigated in male Sprauge-Dawley rats via intravenous (i.v.) and oral (p.o.) routes. [6] Following a 5 mg/kg dose (i.v.) of CP-154,526, drug concentrations followed a biphasic decline over time. CP-154,526 also demonstrated a large volume of distribution (Vd) at 6.7 L/kg, indicating extensive binding of the drug to tissue in Sprauge-Dawley rats. A plasma clearance of 82 ml/min/kg was observed with an estimated elimination half-life of 1.5 hours. Following p.o. administration at a dose of 10 mg/kg, an average peak plasma concentration (Cmax) of 367 ng/mL was determined within 0.5-1 hour of administration. The oral bioavailability was calculated to be 37%, resulting in an estimated hepatic clearance of 63%. [6]
In male Wistar rats given a 5 mg/kg dose (p.o) of CP-154,526, an oral bioavailability of 27% and high volume of distribution at 105 L/kg was determined, with an estimated total clearance (CLt) of 36 ml/min/kg. CP-154,526 was also observed to cross the blood-brain barrier with good penetrance at a 2.5 brain:plasma ratio 8 hours following oral administration. [12] An extensive pharmacokinetic study of Antalarmin conducted in macaques reported an oral bioavailability of 19%, a total clearance of 4.5 L/hr/kg, and an elimination half-life of 7.8 hours following a 20 mg/kg administration (p.o.). This same dose also resulted in mean Antalarmin plasma levels of 76 ng/ml and CSF levels of 9.8 ng/ml at 3 hours post-administration. [13]
Results so far have had limited success, with various CRF antagonists being tested, which showed some antidepressant effects, but failed to produce an effect comparable with conventional antidepressant drugs. [14] However more positive results were seen when Antalarmin was combined with an SSRI antidepressant, suggesting a potential for synergistic effect. [15] Encouraging results have also been observed using Antalarmin as a potential treatment for anxiety [16] [13] and stress-induced hypertension. [17]
Initial studies investigating CP-154,526 showed that the compound binds with high affinity to cortical and pituitary CRH receptors across several species. Additionally, systemic administration of CP-154,526 fully antagonizes the effects of exogenous CRH on ACTH levels, cell firing in the locus coeruleus, and fear potentiation in animal models. [9] However, this potent and selective compound demonstrated low oral bioavailability, and in vitro studies using human liver microsomes predicted high hepatic clearance, deeming the compound unsuitable for clinical development. Nevertheless, many investigators continue to study CP-154,526 and its close analogs (e.g. Antalarmin), using them as tools to examine the physiology of CRH and CRH receptors, as well as to determine the potential therapeutic value of CRH1 antagonists in several CNS and peripheral disorders. [18]
In vitro studies examining the effects of CRH1 antagonists on the Hypothalmic-Pituitary-Adrenal (HPA) axis showed that Antalarmin inhibited ACTH release in rat anterior pituitary cells, [5] as well as inhibited cortisol synthesis and release in human adrenal cells. [19] In vivo studies revealed that pre-treating rats with Antalarmin inhibited increases in plasma ACTH following CRH injection (i.v.), with no effect on baseline levels. [2] However, another study demonstrated that 8 weeks of Antalarmin administered twice daily (i.p.) in rats significantly lowered basal ACTH and corticosterone levels, resulting in reduced adrenocortical responsiveness to ACTH. [20] When Antalarmin was administered to primates, it also inhibited increases in plasma ACTH, as well as prevented the anxiety response produced by a social stressor (e.g. presentation of another male in an unfamiliar environment). [13]
With regards to neurochemical effects, Antalarmin has been shown to inhibit increases in extracellular cortical norepinephrine induced by rat tail pinch, [21] suggesting that CHR1 receptors may be implicated in stress-evoked norepinephrine release in the cortex. Antalarmin was also shown to have electrophysiological effects by partially reversing the inhibition of neuronal firing in the dorsal raphe nucleus that occurs following intracerebroventricular (i.c.v) administration of CRH. [22]
Studies using CRH receptor antagonists such as Antalarmin in anxiety models have shown that these agents produce effects similar to clinically effective anxiolytics. [23] [24] In conditioned fear models, Antalarmin reduced conditioned freezing behavior, suggesting that it blocked the development and expression of conditioned fear, and implicating CRH1 receptors in both processes. [3] Oral administration of Antalarmin (3–30 mg/kg) also significantly reduced immobility in a rat model of behavioral despair, with effects similar to the SSRI fluoxetine . [23] [25]
CRH has also been shown to promote neurodegeneration, suggesting that CRH1 antagonists may have neuroprotective effects. PC12 cells are derived from the rat adrenal medulla and are extensively used to study neural differentiation. PC12 cells treated with CRH (1-10 nM) showed increased numbers of apoptotic cells and upregulation of the Fas ligand via p38 activation, demonstrating the pro-apoptotic effects of CRH. Administration of Antalarmin (10 nM) completely blocked the CRH-induced apoptosis response and inhibited Fas ligand expression. [26]
Antalarmin has also been used extensively to study the role of CRH in inflammation. Intraperitoneal (i.p.) administration of Antalarmin in rats significantly inhibited the inflammation caused by subcutaneous administration of carrageenan (a known inflammatory food additive) as measured by leukocyte concentrations. [2] In a rat skin mast cell activation model, pre-treatment with Antalarmin (10 mg/kg, i.v.) inhibited the CRH-stimulated induction of mast cell degranulation, [27] suggesting pro-inflammatory properties of CRH. Antalarmin also blocked the vascular permeability and mast cell degranulation response induced by intradermal Urocortin (10 nM). [27] Collectively, these results indicate that during stress, CRH leads to the activation of skin mast cells through the CRH1 receptor which triggers vasodilation and increased vascular permeability.
Chronic Antalarmin treatment also showed anti-inflammatory effects and has been suggested as having potential uses in the treatment of inflammatory conditions such as arthritis, [28] as well as stress-induced gastrointestinal ulcers [29] and irritable bowel syndrome. [30] [31]
Mixed results have been seen in research into the use of Antalarmin and other CRF-1 antagonists in the treatment of drug addiction disorders. Tests of Antalarmin on cocaine use in cocaine-addicted monkeys produced only slight reductions of use that were not statistically significant, [32] however in tests on cocaine-addicted rats, Antalarmin did prevent dose escalation with prolonged use, suggesting that it might stabilize cocaine use and prevent it increasing over time, although without consistently reducing it. [33]
Antalarmin also showed positive effects in reducing withdrawal syndrome from chronic opioid use, [34] and significantly reduced self-administration of ethanol in ethanol-addicted rodents. [35] [36] [37]
Overall, additional research is needed to determine the therapeutic efficacy of Antalarmin and other CRH non-peptide antagonists in anxiety, depression, inflammation, neurodegenerative disease, and addiction. [18]
Adrenocorticotropic hormone is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important component of the hypothalamic-pituitary-adrenal axis and is often produced in response to biological stress. Its principal effects are increased production and release of cortisol and androgens by the cortex and medulla of the adrenal gland, respectively. ACTH is also related to the circadian rhythm in many organisms.
Corticotropin-releasing hormone (CRH) is a peptide hormone involved in stress responses. It is a releasing hormone that belongs to corticotropin-releasing factor family. In humans, it is encoded by the CRH gene. Its main function is the stimulation of the pituitary synthesis of adrenocorticotropic hormone (ACTH), as part of the hypothalamic–pituitary–adrenal axis.
The hypothalamic–pituitary–adrenal axis is a complex set of direct influences and feedback interactions among three components: the hypothalamus, the pituitary gland, and the adrenal glands. These organs and their interactions constitute the HPA axis.
Corticotropin-releasing factor family, CRF family is a family of related neuropeptides in vertebrates. This family includes corticotropin-releasing hormone, urotensin-I, urocortin, and sauvagine. The family can be grouped into 2 separate paralogous lineages, with urotensin-I, urocortin and sauvagine in one group and CRH forming the other group. Urocortin and sauvagine appear to represent orthologues of fish urotensin-I in mammals and amphibians, respectively. The peptides have a variety of physiological effects on stress and anxiety, vasoregulation, thermoregulation, growth and metabolism, metamorphosis and reproduction in various species, and are all released as prohormones.
Corticotropes are basophilic cells in the anterior pituitary that produce pro-opiomelanocortin (POMC) which undergoes cleavage to adrenocorticotropin (ACTH), β-lipotropin (β-LPH), and melanocyte-stimulating hormone (MSH). These cells are stimulated by corticotropin releasing hormone (CRH) and make up 15–20% of the cells in the anterior pituitary. The release of ACTH from the corticotropic cells is controlled by CRH, which is formed in the cell bodies of parvocellular neurosecretory cells within the paraventricular nucleus of the hypothalamus and passes to the corticotropes in the anterior pituitary via the hypophyseal portal system. Adrenocorticotropin hormone stimulates the adrenal cortex to release glucocorticoids and plays an important role in the stress response.
Neuropeptide Y (NPY) is a 36 amino-acid neuropeptide that is involved in various physiological and homeostatic processes in both the central and peripheral nervous systems. It is secreted alongside other neurotransmitters such as GABA and glutamate.
Urocortin is a protein that in humans is encoded by the UCN gene. Urocortin belongs to the corticotropin-releasing factor (CRF) family of proteins which includes CRF, urotensin I, sauvagine, urocortin II and urocortin III. Urocortin is involved in the mammalian stress response, and regulates aspects of appetite and stress response.
Urocortin 2 (Ucn2) is an endogenous peptide in the corticotrophin-releasing factor (CRF) family.
Corticotropin-releasing hormone receptors (CRHRs), also known as corticotropin-releasing factor receptors (CRFRs) are a G protein-coupled receptor family that binds corticotropin-releasing hormone (CRH). There are two receptors in the family, designated as type 1 and 2, each encoded by a separate gene.
Neuromedin U is a neuropeptide found in the brain of humans and other mammals, which has a number of diverse functions including contraction of smooth muscle, regulation of blood pressure, pain perception, appetite, bone growth, and hormone release. It was first isolated from the spinal cord in 1985, and named after its ability to cause smooth muscle contraction in the uterus.
Corticotropin-releasing hormone receptor 1 (CRHR1) is a protein, also known as CRF1, with the latter (CRF1) now being the IUPHAR-recommended name. In humans, CRF1 is encoded by the CRHR1 gene at region 17q21.31, beside micrototubule-associated protein tau MAPT.
Corticotropin-releasing hormone receptor 2 (CRHR2) is a protein, also known by the IUPHAR-recommended name CRF2, that is encoded by the CRHR2 gene and occurs on the surfaces of some mammalian cells. CRF2 receptors are type 2 G protein-coupled receptors for corticotropin-releasing hormone (CRH) that are resident in the plasma membranes of hormone-sensitive cells. CRH, a peptide of 41 amino acids synthesized in the hypothalamus, is the principal neuroregulator of the hypothalamic-pituitary-adrenal axis, signaling via guanine nucleotide-binding proteins (G proteins) and downstream effectors such as adenylate cyclase. The CRF2 receptor is a multi-pass membrane protein with a transmembrane domain composed of seven helices arranged in a V-shape. CRF2 receptors are activated by two structurally similar peptides, urocortin II, and urocortin III, as well as CRH.
Urocortin-2 is a protein that in humans is encoded by the UCN2 gene.
Pexacerfont (INN, previously known as BMS-562,086) is a drug developed by Bristol-Myers Squibb which acts as a CRF1 antagonist.
A Corticotropin-releasing hormone antagonist is a specific type of receptor antagonist that blocks the receptor sites for corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF), which synchronizes the behavioral, endocrine, autonomic, and immune responses to stress by controlling the hypothalamic-pituitary-adrenal axis. CRH antagonists thereby block the consequent secretions of ACTH and cortisol due to stress, among other effects.
CP-154,526 is a potent and selective antagonist of the corticotropin releasing hormone receptor 1 developed by Pfizer.
Parvocellular neurosecretory cells are small neurons that produce hypothalamic releasing and inhibiting hormones. The cell bodies of these neurons are located in various nuclei of the hypothalamus or in closely related areas of the basal brain, mainly in the medial zone of the hypothalamus. All or most of the axons of the parvocellular neurosecretory cells project to the median eminence, at the base of the brain, where their nerve terminals release the hypothalamic hormones. These hormones are then immediately absorbed into the blood vessels of the hypothalamo-pituitary portal system, which carry them to the anterior pituitary gland, where they regulate the secretion of hormones into the systemic circulation.
Verucerfont (GSK-561,679) is a drug developed by GlaxoSmithKline which acts as a CRF-1 antagonist. Corticotropin releasing factor (CRF), also known as Corticotropin releasing hormone, is an endogenous peptide hormone which is released in response to various triggers such as chronic stress, and activates the two corticotropin-releasing hormone receptors CRH-1 and CRH-2. This then triggers the release of corticotropin (ACTH), another hormone which is involved in the physiological response to stress.
Epigenetics of depression is the study of how epigenetics contribute to depression.
Emicerfont (GW-876,008) is a drug developed by GlaxoSmithKline which acts as a CRF-1 antagonist. Corticotropin releasing factor (CRF), also known as Corticotropin releasing hormone, is an endogenous peptide hormone which is released in response to various triggers such as chronic stress, and activates the two corticotropin-releasing hormone receptors: CRF1 and CRF2. This then triggers the release of corticotropin (ACTH), another hormone which is involved in the physiological response to stress.