A bankruptcy problem, [1] also called a claims problem, [2] is a problem of distributing a homogeneous divisible good (such as money) among people with different claims. The focus is on the case where the amount is insufficient to satisfy all the claims.
The canonical application is a bankrupt firm that is to be liquidated. The firm owes different amounts of money to different creditors, but the total worth of the company's assets is smaller than its total debt. The problem is how to divide the scarce existing money among the creditors.
Another application would be the division of an estate amongst several heirs, particularly when the estate cannot meet all the deceased's commitments.
A third application [2] is tax assessment . One can consider the claimants as taxpayers, the claims as the incomes, and the endowment as the total after-tax income. Determining the allocation of total after-tax income is equivalent to determining the allocation of tax payments.
The amount available to divide is denoted by (=Estate or Endowment). There are nclaimants. Each claimant i has a claim denoted by .
It is assumed that , that is, the total claims are (weakly) larger than the estate.
A division rule is a function that maps a problem instance to a vector such that and for all i. That is: each claimant receives at most its claim, and the sum of allocations is exactly the estate E.
There are generalized variants in which the total claims might be smaller than the estate. In these generalized variants, is not assumed and is not required.
Another generalization, inspired by realistic bankruptcy problems, is to add an exogeneous priority ordering among the claimants, that may be different even for claimants with identical claims. This problem is called a claims problem with priorities. Another variant is called a claims problem with weights.
There are various rules for solving bankruptcy problems in practice. [1]
.
It is possible to associate each bankruptcy problem with a cooperative bargaining problem, and use a bargaining rule to solve the bankruptcy problem. Then:
It is possible to associate each bankruptcy problem with a cooperative game in which the value of each coalition is its minimal right - the amount that this coalition can ensure itself if all other claimants get their full claim (that is, the amount this coalition can get without going to court). Formally, the value of each subset S of claimants is . The resulting game is convex, [4] so its core is non-empty. One can use a solution concept for cooperative games, to solve the corresponding bankruptcy problem. Every division rule that depends only on the truncated claims corresponds to a cooperative-game solution. In particular:
An alternative way to associate a claims problem with a cooperative game [10] is its maximal right - the amount that this coalition can ensure itself if all other claimants drop their claims: .
In most settings, division rules are often required to satisfy the following basic properties: [2]
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.
A highest-averages method, also called a divisor method, is a class of methods for allocating seats in a parliament among agents such as political parties or federal states. A divisor method is an iterative method: at each iteration, the number of votes of each party is divided by its divisor, which is a function of the number of seats currently allocated to that party. The next seat is allocated to the party whose resulting ratio is largest.
Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.
In applied mathematics – specifically in fuzzy logic – the ordered weighted averaging (OWA) operators provide a parameterized class of mean type aggregation operators. They were introduced by Ronald R. Yager. Many notable mean operators such as the max, arithmetic average, median and min, are members of this class. They have been widely used in computational intelligence because of their ability to model linguistically expressed aggregation instructions.
In multilinear algebra, the tensor rank decomposition or the decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum tensors. This is an open problem.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis. In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. LS-SVMs are a class of kernel-based learning methods.
In mathematics, Welch bounds are a family of inequalities pertinent to the problem of evenly spreading a set of unit vectors in a vector space. The bounds are important tools in the design and analysis of certain methods in telecommunication engineering, particularly in coding theory. The bounds were originally published in a 1974 paper by L. R. Welch.
In mathematics, a submodular set function is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains.
In computer science, optimal computing budget allocation (OCBA) is an approach to maximize the overall simulation efficiency for finding an optimal decision. It was introduced in the mid-1990s by Dr. Chun-Hung Chen.
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem has several variants:
In operations research and social choice, the proportional-fair (PF) rule is a rule saying that, among all possible alternatives, one should pick an alternative that cannot be improved, where "improvement" is measured by the sum of relative improvements possible for each individual agent. It aims to provide a compromise between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian rule - which emphasizes individual fairness.
Mathematics of apportionment describes mathematical principles and algorithms for fair allocation of identical items among parties with different entitlements. Such principles are used to apportion seats in parliaments among federal states or political parties. See apportionment (politics) for the more concrete principles and issues related to apportionment, and apportionment by country for practical methods used around the world.
Coherence, also called uniformity or consistency, is a criterion for evaluating rules for fair division. Coherence requires that the outcome of a fairness rule is fair not only for the overall problem, but also for each sub-problem. Every part of a fair division should be fair.
Optimal apportionment is an approach to apportionment that is based on mathematical optimization.
Constrained equal awards(CEA), also called constrained equal gains, is a division rule for solving bankruptcy problems. According to this rule, each claimant should receive an equal amount, except that no claimant should receive more than his/her claim. In the context of taxation, it is known as leveling tax.
Constrained equal losses(CEL) is a division rule for solving bankruptcy problems. According to this rule, each claimant should lose an equal amount from his or her claim, except that no claimant should receive a negative amount. In the context of taxation, it is known as poll tax.
The proportional rule is a division rule for solving bankruptcy problems. According to this rule, each claimant should receive an amount proportional to their claim. In the context of taxation, it corresponds to a proportional tax.
The contested garment (CG) rule, also called concede-and-divide, is a division rule for solving problems of conflicting claims. The idea is that, if one claimant's claim is less than 100% of the estate to divide, then he effectively concedes the unclaimed estate to the other claimant. Therefore, we first give to each claimant, the amount conceded to him/her by the other claimant. The remaining amount is then divided equally among the two claimants.
A strategic bankruptcy problem is a variant of a bankruptcy problem in which claimants may act strategically, that is, they may manipulate their claims or their behavior. There are various kinds of strategic bankruptcy problems, differing in the assumptions about the possible ways in which claimants may manipulate.
Lexicographic max-min optimization is a kind of multi-objective optimization. In general, multi-objective optimization deals with optimization problems with two or more objective functions to be optimized simultaneously. Lexmaxmin optimization presumes that the decision-maker would like the smallest objective value to be as high as possible; subject to this, the second-smallest objective should be as high as possible; and so on. In other words, the decision-maker ranks the possible solutions according to a leximin order of their objective function values.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)