Dental fluorosis

Last updated
Dental fluorosis
Other namesMottled enamel [1]
Dental fluorosis (mild).png
Mild fluorosis: in its usual mildest form, fluorosis appears as opaque white patches on the enamel
Specialty Dentistry

Dental fluorosis is a common [2] disorder, characterized by hypomineralization of tooth enamel caused by ingestion of excessive fluoride during enamel formation. [3]

Contents

It appears as a range of visual changes in enamel [4] causing degrees of intrinsic tooth discoloration, and, in some cases, physical damage to the teeth. The severity of the condition is dependent on the dose, duration, and age of the individual during the exposure. [1] The "very mild" (and most common) form of fluorosis, is characterized by small, opaque, "paper white" areas scattered irregularly over the tooth, covering less than 25% of the tooth surface. In the "mild" form of the disease, these mottled patches can involve up to half of the surface area of the teeth. When fluorosis is moderate, all of the surfaces of the teeth are mottled and teeth may be ground down and brown stains frequently "disfigure" the teeth. Severe fluorosis is characterized by brown discoloration and discrete or confluent pitting; brown stains are widespread and teeth often present a corroded-looking appearance. [1]

People with fluorosis are relatively resistant to dental caries (tooth decay caused by bacteria), [2] although there may be cosmetic concern. [2] In moderate to severe fluorosis, teeth are weakened and suffer permanent physical damage. [5]

Diagnosis

Amelogenesis imperfecta: this condition can be mistaken for fluorosis G amelogenesis imperfecta.jpg
Amelogenesis imperfecta: this condition can be mistaken for fluorosis

The adequate diagnosis of fluorosis can be diagnosed by visual clinical examination. This requires inspection of dry and clean tooth surfaces under a good lighting. [6] There are individual variations in clinical fluorosis manifestation which are highly dependent on the duration, timing, and dosage of fluoride exposure.There are different classifications to diagnose the severity based on the appearances. The clinical manifestation of mild dental fluorosis is mostly characterised a snow flaking appearance that lack a clear border, opaque, white spots, narrow white lines following the perikymata or patches as the opacities may coalesce with an intact, hard and smooth enamel surface on most of the teeth. [7] With increasing severity, the subsurface enamel, all along the tooth becomes more porous. Enamel may appear yellow/ brown discolouration and/ or many and pitted white-brown lesions that look like cavities. They are often described as "mottled teeth". [8] Fluorosis does not cause discolouration to the enamel directly, as upon eruption into the mouth, affected permanent teeth are not discoloured yet. In dental enamel, fluorosis causes subsurface porosity or hypomineralizations, which extend toward the dentinal-enamel junction as the condition progresses and the affected teeth become more susceptible to staining. Due to diffusion of exogenous ions (e.g., iron and copper), stains develop into the increasingly and abnormally porous enamel. [7]

Enamel hypoplasia caused by untreated celiac disease: this condition is often confused with fluorosis Enamel celiac.jpg
Enamel hypoplasia caused by untreated celiac disease: this condition is often confused with fluorosis

The differential diagnosis for this condition includes:

Classification

Severe fluorosis: brown discolored and mottled enamel of an individual from a region with high levels of naturally occurring fluoride 4724507933 07ac954c27 bFluorose.jpg
Severe fluorosis: brown discolored and mottled enamel of an individual from a region with high levels of naturally occurring fluoride
Severe fluorosis: the enamel is pitted and discolored FluorosisFromNIH.jpg
Severe fluorosis: the enamel is pitted and discolored

The two main classification systems are described below. Others include the tooth surface fluorosis index (Horowitz et al. 1984), which combines Deans index and the TF index; and the fluorosis risk index (Pendrys 1990), which is intended to define the time at which fluoride exposure occurs, and relates fluorosis risk with tooth development stage. [12]

Dean's index

Dean's fluorosis index was first published in 1934 by H. Trendley Dean. The index underwent two changes, appearing in its final form in 1942. [5] An individual's fluorosis score is based on the most severe form of fluorosis found on two or more teeth. [6]

ClassificationCodeCriteria – description of enamel
Normal0The enamel represents the usual translucent semivitriform (glass-like) type of structure. The surface is smooth, glossy and usually of pale creamy white color
Questionable1The enamel discloses slight aberrations from the translucency of normal enamel, ranging from a few white flecks to occasional white spots. This classification is utilised in those instances where a definite diagnosis is not warranted and a classification of 'normal' not justified
Very Mild2Small, opaque, paper white areas scattered irregularly over the tooth but not involving as much as approximately 25% of the tooth surface. Frequently included in this classification are teeth showing no more than about 1 – 2mm of white opacity at the tip of the summit of the cusps, of the bicuspids or second molars.
Mild3The white opaque areas in the enamel of the teeth are more extensive but do involve as much as 50% of the tooth.
Moderate4All enamel surfaces of the teeth are affected and surfaces subject to attrition show wear. Brown stain is frequently a disfiguring feature
Severe5All enamel surfaces are affected and hypoplasia is so marked that the general form of the tooth may be affected. The major diagnostic sign of this classification is discrete or confluent pitting. Brown stains are widespread and teeth often present a corroded-like appearance.

TF index

Proposed by Thylstrup and Fejerskov in 1978, the TF index represents a logical extension of Dean's index, incorporating modern understanding of the underlying pathology of fluorosis. [12] It scores the spectrum of fluorotic changes in enamel from 0 to 9, allowing more precise definition of mild and severe cases. [13]

Causes

Dental fluorosis is caused by a higher than normal amount of fluoride ingestion whilst teeth are forming. Primary dentine fluorosis and enamel fluorosis can only happen during tooth formation, so fluoride exposure occurs in childhood. Enamel fluorosis has a white opaque appearance which is due to the surface of the enamel being hypomineralised. [14]

The most superficial concern in dental fluorosis is aesthetic changes in the permanent dentition (the adult teeth). The period when these teeth are at highest risk of developing fluorosis is between when the child is born up to 6 years old, though there has been some research which proposes that the most crucial course is during the first 2 years of the child's life. [15] [16] From roughly 7 years old thereafter, most children's permanent teeth would have undergone complete development (except their wisdom teeth), and therefore their susceptibility to fluorosis is greatly reduced, or even insignificant, despite the amount of intake of fluoride. [17] The severity of dental fluorosis depends on the amount of fluoride exposure, the age of the child, individual response, weight, degree of physical activity, nutrition, and bone growth. [18] Individual susceptibility to fluorosis is also influenced by genetic factors. [19]

Many well-known sources of fluoride may contribute to overexposure including dentifrice/fluoridated mouthrinse (which young children may swallow), excessive ingestion of fluoride toothpaste, bottled waters which are not tested for their fluoride content, inappropriate use of fluoride supplements, ingestion of foods especially imported from other countries, and public water fluoridation. [20] The last of these sources is directly or indirectly responsible for 40% of all fluorosis, but the resulting effect due to water fluoridation is largely and typically aesthetic. [20] [21] Severe cases can be caused by exposure to water that is naturally fluoridated to levels above the recommended levels, or by exposure to other fluoride sources such as brick tea or pollution from high fluoride coal. [22]

Dental fluorosis has been growing in the United States concurrent with fluoridation of municipal water supplies, although disproportionately by race. [23] A 2010 CDC report acknowledges an overall incidence of dental fluorosis of 22% from 1986-87 increased to 41% in the early 21st century, with an increase in moderate to severe dental fluorosis from 1% to 4%. [24] The 2011-12 NHANES figures documented another 31% overall increase among American teens since the previous decade, with a total adolescent population impact of 61% afflicted. More than one in five American teens (23%) have moderate to severe dental fluorosis on at least two teeth. [25]

Mechanism

Teeth are the most studied body tissues to examine the impact of fluoride to human health. There are a few possible mechanisms that have been proposed. It is generally believed that the hypomineralization of affected enamel is mainly due to in-situ toxic effects of the fluoride on the ameloblasts in the enamel formation, and not caused by the general effects of fluoride on the calcium metabolism, or by the poisoning effects that suppress the fluoride metabolism. However, despite decades of research and studies, there have yet to be any studies that substantiate the believed mechanism whereby dental fluorosis is a result of alteration in the mineralisation that takes place when fluoride interacts with mineralising tissues [26] . [27]

In the extra-cellular environment of maturing enamel, an excess of fluoride ions alters the rate at which enamel matrix proteins (amelogenin) are enzymatically broken down and the rate at which the subsequent breakdown products are removed. [2] [12] Fluoride may also indirectly alter the action of protease via a decrease in the availability of free calcium ions in the mineralization environment. [12] This results in the formation of enamel with less mineralization. This hypomineralized enamel has altered optical properties and appears opaque and lusterless relative to normal enamel. [2]

Traditionally severe fluorosis has been described as enamel hypoplasia, however, hypoplasia does not occur as a result of fluorosis. [12] The pits, bands, and loss of areas of enamel seen in severe fluorosis are the result of damage to the severely hypomineralized, brittle and fragile enamel which occurs after they erupt into the mouth. [12]

Hydroxyapatite is converted to fluoroapatite in a three step process. Dental fluorosis can be prevented at a population level through defluoridation. It is the downward adjustment of the level of fluoride in drinking water.

Management

Dental fluorosis may or may not be of cosmetic concern. In some cases, there may be varying degrees of negative psychosocial effects. The treatment options are:

Epidemiology

Fluorosis is extremely common, with 41% of adolescents having definite fluorosis, and another 20% "questionably" having fluorosis according to the Centers for Disease Control. [28] As of 2005 surveys conducted by the National Institute of Dental and Craniofacial Research in the USA between 1986 and 1987 [29] and by the Center of Disease Control between 1999 and 2004 [28] are the only national sources of data concerning the prevalence of dental fluorosis. Before the 1999-2004 study was published, CDC published an interim report covering data from 1999 to 2002. [30]

CDC findings on children and adolescents
Deans Index2002
Questionable fluorosis11.5%
Very mild fluorosis21.68%
Mild fluorosis6.59%
Moderate to severe fluorosis3.26%
Total confirmed fluorosis prevalence31.65%
Total confirmed and questionable fluorosis prevalence43.15%

The U.S. Centers for Disease Control found a 9 percentage point increase in the prevalence of confirmed dental fluorosis in a 1999-2002 study of American children and adolescents than was found in a similar survey from 1986-1987 (from 22.8% in 1986-1987 to 32% in 1999-2002). In addition, the survey provides further evidence that African Americans suffer from higher rates of fluorosis than Caucasian Americans.

The condition is more prevalent in rural areas where drinking water is derived from shallow wells or hand pumps. [ citation needed ] It is also more likely to occur in areas where the drinking water has a fluoride content greater than 1 ppm (part per million).

Dietary reference intakes for fluoride [29] :25
Age groupReference weight kg (lb)Adequate intake (mg/day)Tolerable upper intake (mg/day)
Infants 0–6 months7 (16)0.010.7
Infants 7–12 months9 (20)0.50.9
Children 1–3 years13 (29)0.71.3
Children 4–8 years22 (48)1.02.2
Children 9–13 years40 (88)2.010
Boys 14–18 years64

(142)

3.010
Girls 14–18 years57 (125)3.010
Males 19 years and over76 (166)4.010
Females 19 years and over61 (133)3.010

If the water supply is fluoridated at the level of 1 ppm, one must consume one litre of water in order to take in 1 mg of fluoride. It is thus improbable a person will receive more than the tolerable upper limit from consuming optimally fluoridated water alone.

Fluoride consumption can exceed the tolerable upper limit when someone drinks a lot of fluoride-containing water in combination with other fluoride sources, such as swallowing fluoridated toothpaste, consuming food with a high fluoride content, or consuming fluoride supplements. The use of fluoride supplements as a prevention for tooth decay is rare in areas with water fluoridation, but was recommended by many dentists in the UK until the early 1990s.

In November 2006 the American Dental Association published information stating that water fluoridation is safe, effective and healthy; that enamel fluorosis, usually mild and difficult for anyone except a dental health care professional to see, can result from ingesting more than optimal amounts of fluoride in early childhood; that it is safe to use fluoridated water to mix infant formula; and that the probability of babies developing fluorosis can be reduced by using ready-to-feed infant formula or using water that is either free of fluoride or low in fluoride to prepare powdered or liquid concentrate formula. They go on to say that the way to get the benefits of fluoride but minimize the risk of fluorosis for a child is to get the right amount of fluoride, not too much and not too little. "Your dentist, pediatrician or family physician can help you determine how to optimize your child's fluoride intake." [31]

Prevention

Dental fluorosis can be prevented by lowering the amount of fluoride intake to below the tolerable upper limit. This can be achieved by consuming de-fluorinated water and improving the general nutritional status of the people. [32] [ better source needed ]

History

In ancient times, Galen describes what is thought to be dental fluorosis. [12] However, it was not until the early 20th century that dental fluorosis became increasingly recognized and scientifically studied.

In 1901 Eager published the first description of the "mottled enamel" of immigrants from a small village near Naples, Italy. [33] He writes that the condition is called "Denti di Chiaie" (Chiaie teeth), named after Stefano Chiaie, an Italian professor. [33] In the United States of America, a dentist, Frederick McKay, set up practice in Colorado Springs in 1901 and discovered a high proportion of the residents had stained teeth, locally termed the "Colorado brown stain". [12] He took this information to Greene Vardiman Black, a prominent American dentist of the time. After examining specimens of affected enamel, in 1916 Black described the condition as "[a]n endemic imperfection of the enamel of the teeth, heretofore unknown in the literature of dentistry." [12] They made the interesting observation that although the mottled enamel was hypomineralized, and therefore should be more susceptible to decay, this was not the case. [12] Gradually, they became aware of existing and further reports of a similar condition worldwide. [12]

In 1931, 3 different groups of scientists around the world published their discoveries that this condition was caused by fluoride in drinking water during childhood. [34] [35] [36] [37] The condition then started to become termed "dental fluorosis". [37] Through epidemiological studies in the US, Henry Trendley Dean helped to identify a causal link between high concentrations of fluoride in the drinking water and mottled enamel. [12] He also produced a classification system for dental fluorosis that is still used in modern times, Dean's Index. [12] As research continued, the protective effect of fluoride against dental decay was demonstrated. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Human tooth</span> Calcified whitish structure in humans mouths used to break down food

Human teeth function to mechanically break down items of food by cutting and crushing them in preparation for swallowing and digesting. As such, they are considered part of the human digestive system. Humans have four types of teeth: incisors, canines, premolars, and molars, which each have a specific function. The incisors cut the food, the canines tear the food and the molars and premolars crush the food. The roots of teeth are embedded in the maxilla or the mandible and are covered by gums. Teeth are made of multiple tissues of varying density and hardness.

<span class="mw-page-title-main">Tooth enamel</span> Major tissue that makes up part of the tooth in humans and many animals

Tooth enamel is one of the four major tissues that make up the tooth in humans and many animals, including some species of fish. It makes up the normally visible part of the tooth, covering the crown. The other major tissues are dentin, cementum, and dental pulp. It is a very hard, white to off-white, highly mineralised substance that acts as a barrier to protect the tooth but can become susceptible to degradation, especially by acids from food and drink. In rare circumstances enamel fails to form, leaving the underlying dentin exposed on the surface.

<span class="mw-page-title-main">Tooth decay</span> Deformation of teeth due to acids produced by bacteria

Tooth decay, also known as cavities or caries, is the breakdown of teeth due to acids produced by bacteria. The cavities may be a number of different colors from yellow to black. Symptoms may include pain and difficulty with eating. Complications may include inflammation of the tissue around the tooth, tooth loss and infection or abscess formation.

<span class="mw-page-title-main">Water fluoridation</span> Addition of fluoride to a water supply to reduce tooth decay

Water fluoridation is the controlled adjustment of fluoride to a public water supply solely to reduce tooth decay. Fluoridated water contains fluoride at a level that is effective for preventing cavities; this can occur naturally or by adding fluoride. Fluoridated water operates on tooth surfaces: in the mouth, it creates low levels of fluoride in saliva, which reduces the rate at which tooth enamel demineralizes and increases the rate at which it remineralizes in the early stages of cavities. Typically a fluoridated compound is added to drinking water, a process that in the U.S. costs an average of about $1.26 per person-year. Defluoridation is needed when the naturally occurring fluoride level exceeds recommended limits. In 2011, the World Health Organization suggested a level of fluoride from 0.5 to 1.5 mg/L, depending on climate, local environment, and other sources of fluoride. Bottled water typically has unknown fluoride levels.

Fluoride toxicity is a condition in which there are elevated levels of the fluoride ion in the body. Although fluoride is safe for dental health at low concentrations, sustained consumption of large amounts of soluble fluoride salts is dangerous. Referring to a common salt of fluoride, sodium fluoride (NaF), the lethal dose for most adult humans is estimated at 5 to 10 g. Ingestion of fluoride can produce gastrointestinal discomfort at doses at least 15 to 20 times lower than lethal doses. Although it is helpful topically for dental health in low dosage, chronic ingestion of fluoride in large amounts interferes with bone formation. In this way, the most widespread examples of fluoride poisoning arise from consumption of ground water that is abnormally fluoride-rich.

<span class="mw-page-title-main">Sodium fluoride</span> Ionic compound (NaF)

Sodium fluoride (NaF) is an inorganic compound with the formula NaF. It is a colorless or white solid that is readily soluble in water. It is used in trace amounts in the fluoridation of drinking water to prevent tooth decay, and in toothpastes and topical pharmaceuticals for the same purpose. In 2020, it was the 265th most commonly prescribed medication in the United States, with more than 1 million prescriptions. It is also used in metallurgy and in medical imaging.

<span class="mw-page-title-main">Fluorine deficiency</span> Medical condition

Fluoride or fluorine deficiency is a disorder which may cause increased dental caries and possibly osteoporosis, due to a lack of fluoride in diet. Common dietary sources of fluoride include tea, grape juice, wine, raisins, some seafood, coffee, and tap water that has been fluoridated. The extent to which the condition truly exists, and its relationship to fluoride poisoning has given rise to some controversy. Fluorine is not considered to be an essential nutrient, but the importance of fluorides for preventing tooth decay is well-recognized, despite the effect is predominantly topical. Prior to 1981, the effect of fluorides was thought to be largely systemic and preeruptive, requiring ingestion. Fluoride is considered essential in the development and maintenance of teeth by the American Dental Hygienists' Association. Fluoride incorporates into the teeth to form and harden teeth enamels. This makes the teeth more acid resistant, as well as more resistant to cavity forming bacteria. Caries-inhibiting effects of fluoride were first noticed 1902, when fluoride in high concentrations was found to stain teeth and prevent tooth decay.

<span class="mw-page-title-main">Fluoride therapy</span> Medical use of fluoride

Fluoride therapy is the use of fluoride for medical purposes. Fluoride supplements are recommended to prevent tooth decay in children older than six months in areas where the drinking water is low in fluoride. It is typically used as a liquid, pill, or paste by mouth. Fluoride has also been used to treat a number of bone diseases.

<span class="mw-page-title-main">Early childhood caries</span> Dental disease of young children

Early childhood caries (ECC), formerly known as nursing bottle caries, baby bottle tooth decay, night bottle mouth and night bottle caries, is a disease that affects teeth in children aged between birth and 71 months. ECC is characterized by the presence of 1 or more decayed, missing, or filled tooth surfaces in any primary tooth. ECC has been shown to be a very common, transmissible bacterial infection, usually passed from the primary caregiver to the child. The main bacteria responsible for dental caries are Streptococcus mutans and Lactobacillus. There is also evidence that supports that those who are in lower socioeconomic populations are at greater risk of developing ECC.

<span class="mw-page-title-main">H. Trendley Dean</span> American dentist (1893–1962)

Henry Trendley Dean was the first director of the United States National Institute of Dental Research and a pioneer investigator of water fluoridation in the prevention of tooth decay.

Olaflur is a fluoride-containing substance that is an ingredient of toothpastes and solutions for the prevention of dental caries. It has been in use since 1966. Especially in combination with dectaflur, it is also used in the form of gels for the treatment of early stages of caries, sensitive teeth, and by dentists for the refluoridation of damaged tooth enamel.

<span class="mw-page-title-main">Fluoride varnish</span> Highly concentrated form of fluoride

Fluoride varnish is a highly concentrated form of fluoride which is applied to the tooth's surface, by a dentist, dental hygienist or other health care professional, as a type of topical fluoride therapy. It is not a permanent varnish but due to its adherent nature it is able to stay in contact with the tooth surface for several hours. It may be applied to the enamel, dentine or cementum of the tooth and can be used to help prevent decay, remineralise the tooth surface and to treat dentine hypersensitivity. There are more than 30 fluoride-containing varnish products on the market today, and they have varying compositions and delivery systems. These compositional differences lead to widely variable pharmacokinetics, the effects of which remain largely untested clinically.

<span class="mw-page-title-main">Remineralisation of teeth</span>

Tooth remineralization is the natural repair process for non-cavitated tooth lesions, in which calcium, phosphate and sometimes fluoride ions are deposited into crystal voids in demineralised enamel. Remineralization can contribute towards restoring strength and function within tooth structure.

<span class="mw-page-title-main">Enamel hypoplasia</span> Medical condition

Enamel hypoplasia is a defect of the teeth in which the enamel is deficient in quantity, caused by defective enamel matrix formation during enamel development, as a result of inherited and acquired systemic condition(s). It can be identified as missing tooth structure and may manifest as pits or grooves in the crown of the affected teeth, and in extreme cases, some portions of the crown of the tooth may have no enamel, exposing the dentin. It may be generalized across the dentition or localized to a few teeth. Defects are categorized by shape or location. Common categories are pit-form, plane-form, linear-form, and localised enamel hypoplasia. Hypoplastic lesions are found in areas of the teeth where the enamel was being actively formed during a systemic or local disturbance. Since the formation of enamel extends over a long period of time, defects may be confined to one well-defined area of the affected teeth. Knowledge of chronological development of deciduous and permanent teeth makes it possible to determine the approximate time at which the developmental disturbance occurred. Enamel hypoplasia varies substantially among populations and can be used to infer health and behavioural impacts from the past. Defects have also been found in a variety of non-human animals.

<span class="mw-page-title-main">Water fluoridation in the United States</span>

As with some other countries, water fluoridation in the United States is a contentious issue. As of May 2000, 42 of the 50 largest U.S. cities had water fluoridation. On January 25, 1945, Grand Rapids, Michigan, became the first community in the United States to fluoridate its drinking water to prevent tooth decay.

Dectaflur (INN) is a fluoride-containing substance used for the prevention and treatment of dental caries, sensitive teeth, and the refluoridation of damaged tooth enamel, typically in combination with olaflur.

<span class="mw-page-title-main">Tooth pathology</span> Medical condition

Tooth pathology is any condition of the teeth that can be congenital or acquired. Sometimes a congenital tooth disease is called a tooth abnormality. These are among the most common diseases in humans The prevention, diagnosis, treatment and rehabilitation of these diseases are the base to the dentistry profession, in which are dentists and dental hygienists, and its sub-specialties, such as oral medicine, oral and maxillofacial surgery, and endodontics. Tooth pathology is usually separated from other types of dental issues, including enamel hypoplasia and tooth wear.

<span class="mw-page-title-main">Tooth discoloration</span> Medical condition

Tooth discoloration is abnormal tooth color, hue or translucency. External discoloration is accumulation of stains on the tooth surface. Internal discoloration is due to absorption of pigment particles into tooth structure. Sometimes there are several different co-existent factors responsible for discoloration.

<span class="mw-page-title-main">Molar incisor hypomineralisation</span> Medical condition

Molar incisor hypomineralisation (MIH) is a type of enamel defect affecting, as the name suggests, the first molars and incisors in the permanent dentition. MIH is considered a worldwide problem with a global prevalence of 12.9% and is usually identified in children under 10 years old. This developmental condition is caused by the lack of mineralisation of enamel during its maturation phase, due to interruption to the function of ameloblasts. Peri- and post-natal factors including premature birth, certain medical conditions, fever and antibiotic use have been found to be associated with development of MIH. Recent studies have suggested the role of genetics and/or epigenetic changes to be contributors of MIH development. However, further studies on the aetiology of MIH are required because it is believed to be multifactorial.

Topical fluorides are fluoride-containing drugs indicated in prevention and treatment of dental caries, particularly in children's primary dentitions. The dental-protecting property of topical fluoride can be attributed to multiple mechanisms of action, including the promotion of remineralization of decalcified enamel, the inhibition of the cariogenic microbial metabolism in dental plaque and the increase of tooth resistance to acid dissolution. Topical fluoride is available in a variety of dose forms, for example, toothpaste, mouth rinses, varnish and silver diamine solution. These dosage forms possess different absorption mechanisms and consist of different active ingredients. Common active ingredients include sodium fluoride, stannous fluoride, silver diamine fluoride. These ingredients account for different pharmacokinetic profiles, thereby having varied dosing regimes and therapeutic effects. A minority of individuals may experience certain adverse effects, including dermatological irritation, hypersensitivity reactions, neurotoxicity and dental fluorosis. In severe cases, fluoride overdose may lead to acute toxicity. While topical fluoride is effective in preventing dental caries, it should be used with caution in specific situations to avoid undesired side effects.

References

  1. 1 2 3 Dean JA (10 August 2015). McDonald and Avery's Dentistry for the Child and Adolescent (10th ed.). Elsevier Health Sciences. p. 132. ISBN   978-0-323-28746-3.
  2. 1 2 3 4 5 Neville BW, Chi AC, Damm DD, Allen CM (13 May 2015). Oral and Maxillofacial Pathology (4th ed.). Elsevier Health Sciences. pp. 52–54. ISBN   978-1-4557-7052-6.
  3. Wong MC, Glenny AM, Tsang BW, Lo EC, Worthington HV, Marinho VC (January 2010). "Topical fluoride as a cause of dental fluorosis in children". The Cochrane Database of Systematic Reviews. 2010 (1): CD007693. doi:10.1002/14651858.CD007693.pub2. PMC   8078481 . PMID   20091645.
  4. Bergc JH, Slayton RL (26 October 2015). Early Childhood Oral Health. John Wiley & Sons. p. 113. ISBN   978-1-118-79210-0.
  5. 1 2 Meiers P. "HT Dean´s epidemiology of Mottled Teeth". The History of Fluorine, Fluoride and Fluoridation. Retrieved 12 November 2015.
  6. 1 2 Whelton H, Browne D, Felicia P, Whelton J. "E-training for Dean's Index Version 2". Oral Health Services Research Centre, University College Cork, Ireland. Archived from the original on 4 June 2016. Retrieved 12 November 2015.
  7. 1 2 Abanto Alvarez J, Rezende KM, Marocho SM, Alves FB, Celiberti P, Ciamponi AL (February 2009). "Dental fluorosis: exposure, prevention and management" (PDF). Medicina Oral, Patologia Oral y Cirugia Bucal. 14 (2): E103–7. PMID   19179949.
  8. Ritter AV (2005). "Dental fluorosis". Journal of Esthetic and Restorative Dentistry. 17 (5): 326–7. doi:10.1111/j.1708-8240.2005.tb00139.x. PMID   16225799.
  9. 1 2 Dental Enamel Defects and Celiac Disease Archived March 5, 2016, at the Wayback Machine National Institute of Health (NIH)
  10. Sabokseir A, Golkari A, Sheiham A (2016-02-25). "Distinguishing between enamel fluorosis and other enamel defects in permanent teeth of children". PeerJ. 4: e1745. doi: 10.7717/peerj.1745 . PMC   4782718 . PMID   26966672.
  11. Skaare AB, Maseng Aas AL, Wang NJ (April 2013). "Enamel defects in permanent incisors after trauma to primary predecessors: inter-observer agreement based on photographs". Dental Traumatology. 29 (2): 79–83. doi:10.1111/j.1600-9657.2012.01153.x. PMID   22676308.
  12. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fejerskov O, Kidd E (16 March 2009). Dental Caries: The Disease and Its Clinical Management. John Wiley & Sons. pp. 299–327. ISBN   978-1-4443-0928-7.
  13. Wagner BM (1993). Health effects of ingested fluoride. Washington, D.C. : National Academy Press. p. 171. ISBN   9786610211333.
  14. 1 2 3 4 Denbesten P, Li W (2011). "Chronic fluoride toxicity: dental fluorosis". In Buzalaf MA (ed.). Fluoride and the Oral Environment. Monographs in Oral Science, Vol. 22. Vol. 22. pp. 81–96. doi:10.1159/000327028. ISBN   978-3-8055-9659-6. PMC   3433161 . PMID   21701193.
  15. Hong L, Levy SM, Broffitt B, Warren JJ, Kanellis MJ, Wefel JS, Dawson CV (2006). "Timing of fluoride intake in relation to development of fluorosis on maxillary central incisors". Community Dentistry and Oral Epidemiology. 34 (4): 299–309. doi: 10.1111/j.1600-0528.2006.00281.x . PMID   16856950.
  16. Buzalaf MAR, Levy SM (2011): Fluoride intake of children: considerations for dental caries and dental fluorosis in Fluoride and the Environment. Editor: MAR Buzalaf, Karger, Basel. Pages 1-19
  17. "Dental Fluorosis" (PDF).
  18. Abanto Alvarez J, Rezende KM, Marocho SM, Alves FB, Celiberti P, Ciamponi AL (February 2009). "Dental fluorosis: exposure, prevention and management" (PDF). Medicina Oral, Patologia Oral y Cirugia Bucal. 14 (2): E103–7. PMID   19179949.
  19. Clark MB, Slayton RL (September 2014). "Fluoride use in caries prevention in the primary care setting". Pediatrics. 134 (3): 626–33. doi: 10.1542/peds.2014-1699 . PMID   25157014.
  20. 1 2 "Comment-Response Summary Report for the Peer Review of the Fluoride: Dose-Response Analysis for Non-Cancer Effects Document" (PDF). Environmental Protection Agency. 2010. 820-R-10-016.
  21. Yeung CA (2008). "A systematic review of the efficacy and safety of fluoridation". Evidence-Based Dentistry. 9 (2): 39–43. doi: 10.1038/sj.ebd.6400578 . PMID   18584000.
  22. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006). "Environmental occurrence, geochemistry and exposure" (PDF). Fluoride in Drinking-water. World Health Organization. pp. 5–27. ISBN   92-4-156319-2 . Retrieved 2009-01-24.
  23. Beltrán-Aguilar ED, et al. (August 26, 2005). "Surveillance for Dental Caries, Dental Sealants, Tooth Retention, Edentulism, and Enamel Fluorosis — United States, 1988–1994 and 1999–2002". Morbidity and Mortality Weekly Report. Surveillance Summaries. 54 (3): 1–44. PMID   16121123.
  24. Beltrán-Aguilar, E. D; Barker, L; Dye, B. A (2010). "Prevalence and severity of dental fluorosis in the United States, 1999-2004" (PDF). NCHS Data Brief (53): 1–8. PMID   21211168.
  25. Wiener, R. C; Shen, C; Findley, P; Tan, X; Sambamoorthi, U (2018). "Dental Fluorosis over Time: A comparison of National Health and Nutrition Examination Survey data from 2001-2002 and 2011-2012". Journal of Dental Hygiene. 92 (1): 23–29. PMC   5929463 . PMID   29500282.
  26. Kidd, E.A.M. (2004). "How 'Clean' Must a Cavity Be before Restoration?". Caries Research. 38 (3): 305–313. doi: 10.1159/000077770 . ISSN   0008-6568.
  27. Aoba, T; Fejerskov, O (2016). "Dental Fluorosis: Chemistry and Biology". Critical Reviews in Oral Biology & Medicine. 13 (2): 155–70. doi:10.1177/154411130201300206. PMID   12097358.
  28. 1 2 Beltrán-Aguilar, Eugenio D.; Barker, Laurie; Dye, Bruce A. (2010). "Prevalence and Severity of Dental Fluorosis in the United States, 1999–2004" (PDF). NCHS Data Brief. National Center for Health Statistics (53): 1–8. PMID   21211168. NCHS data brief, no 53. Archived (PDF) from the original on 2016-06-16. Retrieved 2011-04-26.
  29. 1 2 Fluoridation Facts (PDF). American Dental Association. 2005. p. 29.
  30. "Table 23, Surveillance for Dental Caries, Dental Sealants, Tooth Retention, Edentulism, and Enamel Fluorosis --- United States, 1988--1994 and 1999--2002". Centers for Disease Control and Prevention. 2005. Retrieved 2006-10-29.
  31. Frequently Asked Questions (FAQ), American Dental Association Website accessed February 4, 2012 Archived January 12, 2016, at the Wayback Machine
  32. "Fluorosis: Causes, Diagnosis, Management and Prevention". AIMU.us. August 15, 2017.
  33. 1 2 Eager JM (November 1, 1901). "Denti di Chiaie (Chiaie teeth)". Public Health Reports. 16 (44): 2576–2577. Reprinted in "Public Health Reports, November 1, 1901: Denti di Chiaie (Chiaie teeth), by J.M. Eager". Public Health Reports. 91 (3): 284–5. 1976. PMC   1438998 . PMID   818673.
  34. Velu H, Balozet L (1931). "Reproduction experimentale chez Ie mouton de la dystrophie dentaire des animaux des zones phosphates". Bull Acad Vet France. 4: 373.
  35. Churchill HV (1931). "Occurrence of fluorides in some water of the United States". Ind Eng Chem. 23 (9): 996–998. doi:10.1021/ie50261a007.
  36. Smith MC, Lantz EM, Smith HV (September 1931). "The Cause of Mottled Enamel". Science. 74 (1914): 244. Bibcode:1931Sci....74..244C. doi:10.1126/science.74.1914.244. PMID   17755565.
  37. 1 2 Teotia SP (1999). "Dental fluorosis" (PDF). The National Medical Journal of India. 12 (3): 96–8. PMID   10492579. Archived from the original (PDF) on 2016-03-04.