Alveolar osteitis

Last updated
Alveolar osteitis
Other namesDry socket, fibrinolytic alveolitis
DrySocket.JPG
Alveolar osteitis of a socket after extraction of all maxillary teeth; note lack of blood clot in socket and exposed alveolar bone
Specialty Dentistry   OOjs UI icon edit-ltr-progressive.svg

Alveolar osteitis, also known as dry socket, is inflammation of the alveolar bone (i.e., the alveolar process of the maxilla or mandible). Classically, this occurs as a postoperative complication of tooth extraction.

Contents

Alveolar osteitis usually occurs where the blood clot fails to form or is lost from the socket (i.e., the defect left in the gum when a tooth is taken out). This leaves an empty socket where bone is exposed to the oral cavity, causing a localized alveolar osteitis limited to the lamina dura (i.e., the bone which lines the socket). This specific type is known as dry socket and is associated with increased pain and delayed healing. [1]

Dry socket occurs in 0.5% to 5% of routine dental extractions, [2] [3] [4] [5] and in about 25–30% of extractions of mandibular (lower) wisdom teeth that are impacted (buried in the bone of the lower jaw, erupting during adulthood). [1]

Signs and symptoms

The most common location of dry socket: in the socket of an extracted mandibular third molar (wisdom tooth). Alveolar osteitis labeled dry socket.jpg
The most common location of dry socket: in the socket of an extracted mandibular third molar (wisdom tooth).

Since alveolar osteitis is not primarily an infection, there is not usually any pyrexia (fever) or cervical lymphadenitis (swollen glands in the neck), and only minimal edema (swelling) and erythema (redness) is present in the soft tissues surrounding the socket.

Signs may include:

Symptoms may include:

Causes

The cause(s) of dry socket are not completely understood. [2] Normally, following extraction of a tooth, blood is extravasated into the socket, and a blood clot (thrombus) forms. [4] This blood clot is replaced with granulation tissue which consists of proliferating fibroblasts and endothelial cells derived from remnants of the periodontal membrane, surrounding alveolar bone and gingival mucosa. [4] In time this in turn is replaced by coarse, fibrillar bone and finally by mature, woven bone. [1] The clot may fail to form because of poor blood supply (e.g., secondary to local factors such as smoking, anatomical site, bone density and conditions which cause sclerotic bone to form). [7] The clot may be lost because of excessive mouth rinsing, or disintegrate prematurely due to fibrinolysis. [4] Fibrinolysis is the degeneration of the clot and may be caused by the conversion of plasminogen to plasmin and formation of kinins. [1] Factors which promote fibrinolysis include local trauma, estrogens, and pyrogens from bacteria. [1]

Bacteria may secondarily colonize the socket, and lead to further dissolution of the clot. [5] Bacterial breakdown and fibrinolysis are widely accepted as major contributing factors to the loss of the clot. [5] Bone tissue is exposed to the oral environment, and a localized inflammatory reaction takes place in the adjacent marrow spaces. [4] This localizes the inflammation to the walls of the socket, which become necrotic. [7] The necrotic bone in the socket walls is slowly separated by osteoclasts and fragmentary sequestra may form. [4] The bones of the jaws seem to have some evolutionary resistance to this process. When bone is exposed at other sites in the human body, this is a much more serious condition.

In a dry socket, healing is delayed because tissue must grow from the surrounding gingival mucosa, which takes longer than the normal organisation of a blood clot. Some patients may develop short term halitosis, [5] which is the result of food debris stagnating in the socket and the subsequent action of halitogenic bacteria. [9] The main factors involved in the development of dry socket are discussed below.

Extraction site

Dry sockets more commonly occur in the mandible (lower jaw) than the maxilla (upper), due to the relatively poor blood supply of the mandible and also because food debris tends to gather in lower sockets more readily than upper ones. [2] It more commonly occurs in posterior sockets (molar teeth) than anterior sockets (premolars and incisors), [4] possibly because the size of the created surgical defect is relatively larger, and because the blood supply is relatively poorer at these sites. Dry socket is especially associated with extraction of lower wisdom teeth. [4] Inadequate irrigation (washing) of the socket has been associated with increased likelihood of dry socket. [1]

Infection

Dry socket is more likely to occur where there is a pre-existing infection in the mouth, [1] such as necrotizing ulcerative gingivitis or chronic periodontitis. Wisdom teeth not associated with pericoronitis are less likely to cause a dry socket when extracted. [1] The oral microbiota has been demonstrated to have fibrinolytic action in some individuals, and these persons may be predisposed to developing dry sockets after tooth extraction. [2] Infection of the socket following tooth extraction is different from dry socket, although in dry socket secondary infection may occur in addition.

Smoking

Smoking and tobacco use of any kind are associated with increased risk of dry socket. [2] This may be partially due to the vasoconstrictive action of nicotine on small blood vessels. [2] Another risk can be attributed to the actual inhalation, as drawing smoke, particularly from dense filters or tightly rolled cigarettes, creates a small amount of suction that can cause the blood clot in a healing gum to become loose or dislodged over a period of time. Not smoking in the days immediately following a dental extraction reduces the risk of a dry socket occurring.

Surgical trauma

Dry socket is more likely to occur following a difficult tooth extraction. [2] It is thought that excessive force applied to the tooth, or excessive movement of the tooth burnishes the bony walls of the socket and crushes blood vessels, impairing the repair process. [2]

Vasoconstrictors

Vasoconstrictors are present in most local anesthetics and are intended to increase the length of analgesia by reducing blood supply to the region which reduces the amount of local anesthetic solution that is absorbed into the circulation and carried from the local tissues. Hence, use of local anesthetics with vasoconstrictors is associated with an increased risk of dry socket occurring. [2] However, on occasion, use of local anesthetic without vasoconstrictors would not provide sufficient analgesia, especially in the presence of acute pain and infection on maxillary teeth, meaning that the total dose of local anesthetic may need to be increased. Adequate pain control during the extraction is balanced against an increased risk of dry socket. However, the use of 3% mepivacaine without epinephrine in inferior alveolar nerve blocks has been found to have a similar anesthetic effect to that of lidocaine with 1:100,000 epinephrine, save for a shorter duration of action, and, as such, this may be considered as an alternative in simple mandibular extractions.

Radiotherapy

Radiotherapy directed at the bones of the jaws causes several changes to the tissue, resulting in decreased blood supply. [4]

Menstrual cycle

The menstrual cycle could be a determinant risk factor in the frequency of alveolar osteitis. Studies have shown that because of hormonal changes, women in the middle of menstrual cycle and the ones taking oral contraceptives (birth control pills) have a higher tendency of having alveolar osteitis after their tooth extraction surgery. It is recommended that elective surgeries be performed during the menstrual period in both users and non-users of oral contraceptives, to eliminate the effect of cycle-related hormonal changes on the development of alveolar osteitis. [10]

Diagnosis

Dry socket typically causes pain on the second to fourth day following a dental extraction. Other causes of post extraction pain usually occur immediately after the anesthesia/analgesia has worn off, (e.g., normal pain from surgical trauma or mandibular fracture) or has a more delayed onset (e.g., osteomyelitis, which typically causes pain several weeks following an extraction). [9] Examination typically involves gentle irrigation with warm saline and probing of the socket to establish the diagnosis. [1] Sometimes part of the root of the tooth or a piece of bone fractures off and is retained in the socket. This can be another cause of pain in a socket and causes delayed healing. A dental radiograph (X-ray) may be indicated to demonstrate such a suspected fragment. [9]

Prevention

Some evidence suggests that rinsing with chlorhexidine (0.12% or 0.2%) or placing chlorhexidine gel (0.2%) in the sockets of extracted teeth reduces the frequency of dry socket. [5] Another review concluded that preventative antibiotics reduce the risk of dry socket (and infection and pain) following third molar extractions in healthy individuals. [11] The authors questioned whether treating 19 people with antibiotics to prevent one infection would do more harm overall than good, [11] in view of the potential side effects and also of antibiotic resistance. Nevertheless, there is evidence that some individuals, based on a clinical assessment of their conditions, who are at clear risk may benefit from antibiotics. [11] There is also evidence that antifibrinolytic agents applied to the socket after the extraction may reduce the risk of dry socket. [5]

Some dentists and oral surgeons routinely debride the bony walls of the socket to encourage hemorrhage (bleeding) in the belief that this reduces the incidence of dry socket, but there is no evidence to support this practice. It has been suggested that dental extractions in females taking oral contraceptives be scheduled on days without estrogen supplementation (typically days 23–28 of the menstrual cycle). [1] It has also been suggested that teeth to be extracted be scaled prior to the procedure. [2]

Prevention of alveolar osteitis can be exacted by following post-operative instructions, including:

  1. Taking any recommended medications
  2. Avoiding intake of hot fluids for one to two days. Hot fluids raise the local blood flow and thus interfere with organization of the clot. Therefore, cold fluids and foods are encouraged, which facilitate clot formation and prevent its disintegration.
  3. Avoiding smoking. It reduces the blood supply, leading to tissue ischemia, reduced tissue perfusion and eventually higher incidence of painful socket.
  4. Avoiding drinking through a straw or spitting forcefully as this creates a negative pressure within the oral cavity leading to an increased chance of blood clot instability. [8]

Treatment

Treatment is usually symptomatic, [5] (i.e., pain medications) and also the removal of debris from the socket by irrigation with saline or local anesthetic. [5] Medicated dressings are also commonly placed in the socket; [5] although these will act as a foreign body and prolong healing, they are usually needed due to the pain. The dressings are usually stopped once the pain is lessened. Examples of medicated dressings include antibacterials, topical anesthetics and obtundants, or combinations of all three, e.g., zinc oxide and eugenol impregnated cotton pellets, alvogyl (eugenol, iodoform and butamben), dentalone, bismuth subnitrate and iodoform paste (BIPP) on ribbon gauze and metronidazole and lidocaine ointment. [5] [12] A 2012 review of treatments for dry socket concluded that there was not enough evidence to determine the effectiveness of any treatments. [5] People who develop a dry socket typically seek healthcare advice several times after the dental extraction, where the old dressing is removed, the socket irrigated and a new dressing placed. Curettage of the socket increases the pain and whether it is of overall benefit is debated. [1] [13]

Prognosis

If a dry socket occurs, the total healing time is increased. Postoperative pain is also worse than the normal discomfort which accompanies healing following any minor surgical procedure. The pain may last for seven to forty days. [1] [2]

Epidemiology

Overall, the rate of dry socket is about 0.5–5% for routine dental extractions, [2] [4] [5] and about 25–30% for impacted mandibular third molars (wisdom teeth which are buried in the bone). [1]

Females are more frequently affected than males, but this appears to be related to oral contraceptive use rather than any underlying gender predilection. [1] [2] The majority of dry sockets occur in individuals aged between 20 and 40 which is when most dental extractions occur, although for any given individual it is more likely to occur with increasing age. [1]

Other possible risk factors include periodontal disease, acute necrotizing ulcerative gingivitis, local bone disease, Paget's disease of bone, osteopetrosis, cemento-osseous dysplasia, a history of previously developing a dry socket with past extractions and inadequate oral hygiene. [4] [5] [9] Other factors in the postoperative period that may lead to loss of the blood clot include forceful spitting, sucking through a straw, and coughing or sneezing. [5]

Etymology

Alveolar refers to the alveolus, the alveolar processes of the mandible or maxilla; osteitis is derived from oste-, from Greek, osteon meaning "bone"; and -itis means a disease characterized by inflammation.

Osteitis generally refers to localized inflammation of bone with no progression through marrow spaces (compare with osteomyelitis). [4]

Often, the term alveolar osteitis is considered synonymous with "dry socket", but some specify that dry socket is a focal or localized alveolar osteitis. [2] An example of another type of osteitis is focal sclerosing/condensing osteitis. [4] The name dry socket is used because the socket has a dry appearance once the blood clot is lost and debris is washed away.

Related Research Articles

<span class="mw-page-title-main">Wisdom tooth</span> Large tooth at the back of the human mouth

The third molar, commonly called wisdom tooth, is the most posterior of the three molars in each quadrant of the human dentition. The age at which wisdom teeth come through (erupt) is variable, but this generally occurs between late teens and early twenties. Most adults have four wisdom teeth, one in each of the four quadrants, but it is possible to have none, fewer, or more, in which case the extras are called supernumerary teeth. Wisdom teeth may become stuck (impacted) against other teeth if there is not enough space for them to come through normally. Impacted wisdom teeth are still sometimes removed for orthodontic treatment, believing that they move the other teeth and cause crowding, though this is not held anymore as true.

<span class="mw-page-title-main">Toothache</span> Medical condition of the teeth

Toothache, also known as dental pain or tooth pain, is pain in the teeth or their supporting structures, caused by dental diseases or pain referred to the teeth by non-dental diseases. When severe it may impact sleep, eating, and other daily activities.

<span class="mw-page-title-main">Dental implant</span> Surgical component that interfaces with the bone of the jaw

A dental implant is a prosthesis that interfaces with the bone of the jaw or skull to support a dental prosthesis such as a crown, bridge, denture, or facial prosthesis or to act as an orthodontic anchor. The basis for modern dental implants is a biological process called osseointegration, in which materials such as titanium or zirconia form an intimate bond to the bone. The implant fixture is first placed so that it is likely to osseointegrate, then a dental prosthetic is added. A variable amount of healing time is required for osseointegration before either the dental prosthetic is attached to the implant or an abutment is placed which will hold a dental prosthetic/crown.

<span class="mw-page-title-main">Periodontal fiber</span> Group of specialized connective tissue fibers

The periodontal ligament, commonly abbreviated as the PDL, is a group of specialized connective tissue fibers that essentially attach a tooth to the alveolar bone within which it sits. It inserts into root cementum on one side and onto alveolar bone on the other.

<span class="mw-page-title-main">Dental extraction</span> Operation to remove a tooth

A dental extraction is the removal of teeth from the dental alveolus (socket) in the alveolar bone. Extractions are performed for a wide variety of reasons, but most commonly to remove teeth which have become unrestorable through tooth decay, periodontal disease, or dental trauma, especially when they are associated with toothache. Sometimes impacted wisdom teeth cause recurrent infections of the gum (pericoronitis), and may be removed when other conservative treatments have failed. In orthodontics, if the teeth are crowded, healthy teeth may be extracted to create space so the rest of the teeth can be straightened.

<span class="mw-page-title-main">Alveolar process</span> Bulge on jaws holding teeth

The alveolar process or alveolar bone is the thickened ridge of bone that contains the tooth sockets on the jaw bones. The structures are covered by gums as part of the oral cavity.

<span class="mw-page-title-main">Pericoronitis</span> Inflammation of the soft tissues surrounding the crown of a partially erupted tooth

Pericoronitis is inflammation of the soft tissues surrounding the crown of a partially erupted tooth, including the gingiva (gums) and the dental follicle. The soft tissue covering a partially erupted tooth is known as an operculum, an area which can be difficult to access with normal oral hygiene methods. The hyponym operculitis technically refers to inflammation of the operculum alone.

A dental emergency is an issue involving the teeth and supporting tissues that are of high importance to be treated by the relevant professional. Dental emergencies do not always involve pain, although this is a common signal that something needs to be looked at. Pain can originate from the tooth, surrounding tissues or can have the sensation of originating in the teeth but be caused by an independent source. Depending on the type of pain experienced an experienced clinician can determine the likely cause and can treat the issue as each tissue type gives different messages in a dental emergency.

<span class="mw-page-title-main">Veterinary dentistry</span> Branch of veterinary medicine

Veterinary dentistry is the field of dentistry applied to the care of animals. It is the art and science of prevention, diagnosis, and treatment of conditions, diseases, and disorders of the oral cavity, the maxillofacial region, and its associated structures as it relates to animals.

<span class="mw-page-title-main">Osteonecrosis of the jaw</span> Medical condition

Osteonecrosis of the jaw (ONJ) is a severe bone disease (osteonecrosis) that affects the jaws. Various forms of ONJ have been described since 1861, and a number of causes have been suggested in the literature.

Dental anesthesia is the application of anesthesia to dentistry. It includes local anesthetics, sedation, and general anesthesia.

<span class="mw-page-title-main">Tooth impaction</span> Prevention of tooth eruption by a physical barrier

An impacted tooth is one that fails to erupt into the dental arch within the expected developmental window. Because impacted teeth do not erupt, they are retained throughout the individual's lifetime unless extracted or exposed surgically. Teeth may become impacted because of adjacent teeth, dense overlying bone, excessive soft tissue or a genetic abnormality. Most often, the cause of impaction is inadequate arch length and space in which to erupt. That is the total length of the alveolar arch is smaller than the tooth arch. The wisdom teeth are frequently impacted because they are the last teeth to erupt in the oral cavity. Mandibular third molars are more commonly impacted than their maxillary counterparts.

<span class="mw-page-title-main">Coronectomy</span> Removal of the crown of a tooth

When extracting lower wisdom teeth, coronectomy is a treatment option involving removing the crown of the lower wisdom tooth, whilst keeping the roots in place in healthy patients. This option is given to patients as an alternative to extraction when the wisdom teeth are in close association with the inferior alveolar nerve, and so used to prevent damage to the nerve which may occur during extraction.

Socket preservation or alveolar ridge preservation is a procedure to reduce bone loss after tooth extraction. After tooth extraction, the jaw bone has a natural tendency to become narrow, and lose its original shape because the bone quickly resorbs, resulting in 30–60% loss in bone volume in the first six months. Bone loss, can compromise the ability to place a dental implant, or its aesthetics and functional ability.

<span class="mw-page-title-main">Osteoradionecrosis</span> Osteoradionecrosis is an Acute form of Osteomyelitis

Osteoradionecrosis (ORN) is a serious complication of radiation therapy in cancer treatment where radiated bone becomes necrotic and exposed. ORN occurs most commonly in the mouth during the treatment of head and neck cancer, and can arise over 5 years after radiation. Common signs and symptoms include pain, difficulty chewing, trismus, mouth-to-skin fistulas and non-healing ulcers.

<span class="mw-page-title-main">Pterygomandibular space</span>

The pterygomandibular space is a fascial space of the head and neck. It is a potential space in the head and is paired on each side. It is located between the lateral pterygoid muscle and the medial surface of the ramus of the mandible. The pterygomandibular space is one of the four compartments of the masticator space.

Osteomyelitis of the jaws is osteomyelitis which occurs in the bones of the jaws. Historically, osteomyelitis of the jaws was a common complication of odontogenic infection. Before the antibiotic era, it was frequently a fatal condition.

<span class="mw-page-title-main">Impacted wisdom teeth</span> Teeth that do not fully grow out of the gums due to being blocked by other teeth

Impacted wisdom teeth is a condition where the third molars are prevented from erupting into the mouth. This can be caused by a physical barrier, such as other teeth, or when the tooth is angled away from a vertical position. Completely unerupted wisdom teeth usually result in no symptoms, although they can sometimes develop cysts or neoplasms. Partially erupted wisdom teeth or wisdom teeth that are not erupted but are exposed to oral bacteria through deep periodontal pocket, can develop cavities or pericoronitis. Removal of impacted wisdom teeth is advised for the future prevention of or in the current presence of certain pathologies, such as caries, periodontal disease or cysts. Prophylactic (preventative) extraction of wisdom teeth is preferred to be done at a younger age to take advantage of incomplete root development, which is associated with an easier surgical procedure and less probability of complications.

<span class="mw-page-title-main">Oroantral fistula</span> Medical condition

Oroantral fistula (OAF) is an epithelialised oroantral communication (OAC). OAC refers to an abnormal connection between the oral cavity and antrum. The creation of an OAC is most commonly due to the extraction of a maxillary (upper) tooth closely related to the antral floor. A small OAC may heal spontaneously but a larger OAC would require surgical closure to prevent the development of persistent OAF and chronic sinusitis.

Alveoloplasty is a surgical pre-prosthetic procedure performed to facilitate removal of teeth, and smoothen or reshape the jawbone for prosthetic and cosmetic purposes. In this procedure, the bony edges of the alveolar ridge and its surrounding structures is made smooth, redesigned or recontoured so that a well-fitting, comfortable, and esthetic prosthesis may be fabricated or implants may be surgically inserted. This pre-prosthetic surgery which may include bone grafting prepares the mouth to receive a prosthesis or implants by improving the condition and quality of the supporting structures so they can provide support, better retention and stability to the prosthesis.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Neville, BW; Damm, DD; Allen, CM; Bouquot, JE (2002). Oral & Maxillofacial Pathology (2nd ed.). Philadelphia: W.B. Saunders. p.  133. ISBN   0721690033.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Wray, D; Stenhouse D; Lee D; Clark AJE (2003). Textbook of general and oral surgery. Edinburgh [etc.]: Churchill Livingstone. pp. 216–217. ISBN   0443070830.
  3. Parthasarathi, K.; Smith, A.; Chandu, A. (2011). "Factors Affecting Incidence of Dry Socket: A Prospective Community-Based Study". Journal of Oral and Maxillofacial Surgery. 69: 1880–1884. doi:10.1016/j.joms.2010.11.006. PMID   21419540.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 Soames JV; Southam JC (1999). Oral pathology (3. ed., [Nachdr.] ed.). Oxford [u.a.]: Oxford Univ. Press. pp.  296–298. ISBN   0192628941.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Daly, Blánaid Jm; Sharif, Mohammad O.; Jones, Kate; Worthington, Helen V.; Beattie, Anna (2022-09-26). "Local interventions for the management of alveolar osteitis (dry socket)". The Cochrane Database of Systematic Reviews. 9: CD006968. doi:10.1002/14651858.CD006968.pub3. ISSN   1469-493X. PMC   9511819 . PMID   36156769.
  6. Coulthard, P; Horner K; Sloan P; Theaker E (2008). Master dentistry. volume 1: Oral and maxillofacial surgery, radiology, pathology and oral medicine (2nd ed.). Edinburgh: Churchill Livingstone/Elsevier. p.  90. ISBN   9780443068966.
  7. 1 2 3 4 5 6 Fragiskos, FD (2007). Oral surgery . Berlin: Springer. p.  199. ISBN   978-3-540-25184-2.
  8. 1 2 3 Tucker, MR; Hupp JR; Ellis E (2008). Contemporary oral and maxillofacial surgery (5th ed.). St. Louis, Mo.: Mosby Elsevier. p.  198. ISBN   9780323049030.
  9. 1 2 3 4 Odell, Edward W., ed. (2010). Clinical problem solving in dentistry (3rd ed.). Edinburgh: Churchill Livingstone. pp.  67–69. ISBN   9780443067846.
  10. Eshghpour, Majid; Rezaei, Naser Mohammadzadeh; Nejat, AmirHossein (2013-09-01). "Effect of menstrual cycle on frequency of alveolar osteitis in women undergoing surgical removal of mandibular third molar: a single-blind randomized clinical trial". Journal of Oral and Maxillofacial Surgery. 71 (9): 1484–1489. doi:10.1016/j.joms.2013.05.004. ISSN   1531-5053. PMID   23866782.
  11. 1 2 3 Lodi, Giovanni; Azzi, Lorenzo; Varoni, Elena Maria; Pentenero, Monica; Del Fabbro, Massimo; Carrassi, Antonio; Sardella, Andrea; Manfredi, Maddalena (2021-02-24). "Antibiotics to prevent complications following tooth extractions". The Cochrane Database of Systematic Reviews. 2021 (2): CD003811. doi:10.1002/14651858.CD003811.pub3. ISSN   1469-493X. PMC   8094158 . PMID   33624847.
  12. Tarakji B, Saleh LA, Umair A, Azzeghaiby SN, Hanouneh S (April 2015). "Systemic review of dry socket: aetiology, treatment, and prevention". J Clin Diagn Res. 9 (4): ZE10–3. doi:10.7860/JCDR/2015/12422.5840. PMC   4437177 . PMID   26023661.
  13. Taberner-Vallverdu, M; Nazir, M; Sánchez-Garcés, MA; Gay-Escoda, C (Sep 1, 2015). "Efficacy of different methods used for dry socket management: A systematic review". Med Oral Patol Oral Cir Bucal. 20 (5): e633–e639. doi: 10.4317/medoral.20589 . PMC   4598935 . PMID   26116842.>