Distilling ship

Last updated
The distilling ship USS Pasig (AW-3) was converted from a T2-SE-A2 tanker. AW-3 Pasig.jpg
The distilling ship USS Pasig (AW-3) was converted from a T2-SE-A2 tanker.

A distilling ship is a class of military ships, generally converted tankers, with the capability to convert salt water into fresh water. They were typically stationed at forward bases during conflict where they supported on-the-ground troops and front line naval units. [1]

Contents

Kleinschmidt still

While steamships often used the heat in low-pressure steam exhausted from propulsion machinery to distill fresh water from seawater, that was relatively inefficient when the ship was not underway. Dr. R.V. Kleinschmidt developed a compression still while working at the Arthur D. Little Laboratories in Cambridge, Massachusetts. These stills were manufactured for the United States Navy by E. B. Badger and Sons of Boston. After these Kleinschmidt stills proved successful aboard diesel engined ships like submarines, destroyer escorts, and tank landing ships, several stills were placed aboard tankers built as distilling ships. [2]

Seawater enters the evaporation chamber through two heat exchangers. The evaporation chamber has an electrical heating element used to initially heat the seawater during startup, and the resulting steam is run through a rotary compressor which increases the steam temperature while creating a vacuum over the seawater in the evaporation chamber to lower the boiling temperature of seawater. The compressed steam is then piped though the evaporation chamber as the primary source of heat so the heating element becomes unnecessary for sustained operation. The compressor maintains a pressure difference of approximately 3 psi (21 kPa) between the boiling seawater and condensing steam which translates to an approximate temperature difference of 5 °C (9 °F) across the tube walls within the evaporation chamber. Steam condensed while evaporating the seawater is removed as fresh water through one of the heat exchangers pre-heating the incoming seawater, and about twenty percent of the incoming seawater leaves the evaporation chamber as hot brine pumped overboard through another heat exchanger. [2]

Operational experience

These ships frequently operated in tropical harbors where seawater contained appreciable quantities of pollutants. Some of these pollutants would be carried through the compressor as mist from the boiling seawater, and the temperature of the distillation process was inadequate to sterilize the fresh water. Some microorganisms carried through to the fresh water were pathogenic, while others colonized the ships' fresh water tanks using nutrients carried through the compressors to cause taste and odor problems making the water unpalatable. Microbial growth was rapid in the warm water of the tropics. The United States Navy crew would include a naval surgeon to test and maintain water quality. [1]

A newly cleaned still would produce about 200 gallons of fresh water per gallon of diesel fuel powering the compressor, but accumulation of scale on the brine side of the steam pipes within the evaporation chamber and seawater heat exchanger would typically reduce efficiency to about 100 gallons of water per gallon of fuel after 700 hours of operation. [3]

See also

Related Research Articles

Ocean thermal energy conversion (OTEC) is a renewable energy technology that harnesses the temperature difference between the warm surface waters of the ocean and the cold depths to produce electricity. It is a unique form of clean energy generation that has the potential to provide a consistent and sustainable source of power. Although it has challenges to overcome, OTEC has the potential to provide a consistent and sustainable source of clean energy, particularly in tropical regions with access to deep ocean water.

<span class="mw-page-title-main">Distilled water</span> Water that has had many of its impurities removed through distillation

Distilled water is water that has been boiled into vapor and condensed back into liquid in a separate container. Impurities in the original water that do not boil below or near the boiling point of water remain in the original container. Thus, distilled water is a type of purified water.

<span class="mw-page-title-main">Desalination</span> Removal of salts from water

Desalination is a process that takes away mineral components from saline water. More generally, desalination is the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltwater is desalinated to produce water suitable for human consumption or irrigation. The by-product of the desalination process is brine. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water resources.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons, or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

Multi-stage flash distillation (MSF) is a water desalination process that distills sea water by flashing a portion of the water into steam in multiple stages of what are essentially countercurrent heat exchangers. Current MSF facilities may have as many as 30 stages.

Solar desalination is a desalination technique powered by solar energy. The two common methods are direct (thermal) and indirect (photovoltaic).

<span class="mw-page-title-main">Icemaker</span>

An icemaker, ice generator, or ice machine may refer to either a consumer device for making ice, found inside a home freezer; a stand-alone appliance for making ice, or an industrial machine for making ice on a large scale. The term "ice machine" usually refers to the stand-alone appliance.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

An atmospheric water generator (AWG), is a device that extracts water from humid ambient air, producing potable water. Water vapor in the air can be extracted either by condensation - cooling the air below its dew point, exposing the air to desiccants, using membranes that only pass water vapor, collecting fog, or pressurizing the air. AWGs are useful where potable water is difficult to obtain, because water is always present in ambient air.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Vapor-compression evaporation</span> Evaporation method

Vapor-compression evaporation is the evaporation method by which a blower, compressor or jet ejector is used to compress, and thus, increase the pressure of the vapor produced. Since the pressure increase of the vapor also generates an increase in the condensation temperature, the same vapor can serve as the heating medium for its "mother" liquid or solution being concentrated, from which the vapor was generated to begin with. If no compression was provided, the vapor would be at the same temperature as the boiling liquid/solution, and no heat transfer could take place.

<span class="mw-page-title-main">Evaporator</span> Machine transforming a liquid into a gas

An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer to provide the necessary thermal energy for phase transition from liquid to vapor. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment, causing it to boil at a lower temperature compared to normal atmospheric boiling.

A seawater greenhouse is a greenhouse structure that enables the growth of crops and the production of fresh water in arid regions which constitute about one third of the earth's land area. This in response to global water scarcity, peak water and soil becoming salted. The system uses seawater and solar energy, and has a similar structure to the pad-and-fan greenhouse, but with additional evaporators and condensers. The seawater is pumped into the greenhouse to create a cool and humid environment, the optimal conditions for the cultivation of temperate crops. The freshwater is produced in a condensed state created by the solar desalination principle, which removes salt and impurities. Finally, the remaining humidified air is expelled from the greenhouse and used to improve growing conditions for outdoor plants.

Multiple-effect distillation or multi-effect distillation (MED) is a distillation process often used for sea water desalination. It consists of multiple stages or "effects". In each stage the feed water is heated by steam in tubes, usually by spraying saline water onto them. Some of the water evaporates, and this steam flows into the tubes of the next stage (effect), heating and evaporating more water. Each stage essentially reuses the energy from the previous stage, with successively lower temperatures and pressures after each one. There are different configurations, such as forward-feed, backward-feed, etc. Additionally, between stages this steam uses some heat to preheat incoming saline water.

<span class="mw-page-title-main">Chaplin's patent distilling apparatus</span>

The Chaplin's patent distilling apparatus with Steam pump for circulating water attached was an early design of an evaporator, a device for producing fresh water on board ship by distillation of seawater. An example of this apparatus has been recovered from the wreck of SS Xantho (1872), an auxiliary steamship used in Australia to transport passengers and trade goods before ultimately sinking in Port Gregory, Western Australia in 1872. It is purported that the Alexander Chaplin distiller from the Xantho wreck is the only known surviving example of a Chaplin distilling apparatus on board a vessel of this period.

<span class="mw-page-title-main">Evaporator (marine)</span> Fresh water production device

An evaporator, distiller or distilling apparatus is a piece of ship's equipment used to produce fresh drinking water from sea water by distillation. As fresh water is bulky, may spoil in storage, and is an essential supply for any long voyage, the ability to produce more fresh water in mid-ocean is important for any ship.

A climbing/falling film plate evaporator is a specialized type of evaporator in which a thin film of liquid is passed over a rising and falling plate to allow the evaporation process to occur. It is an extension of the falling film evaporator, and has application in any field where the liquid to be evaporated cannot withstand extended exposure to high temperatures, such as the concentration of fruit juices.

The low-temperature distillation (LTD) technology is the first implementation of the direct spray distillation (DSD) process. The first large-scale units are now in operation for desalination. The process was first developed by scientists at the University of Applied Sciences in Switzerland, focusing on low-temperature distillation in vacuum conditions, from 2000 to 2005.

References

  1. 1 2 Budge, Kent G. "Distilling Ships (AW)". The Pacific War Online Encyclopedia. Retrieved 28 March 2022.
  2. 1 2 Sanders, Gold V. (1946). "Navy's Compression Still Makes Fresh Water Cheap". Popular Science . Godfrey Hammond. 148 (2): 89&90.
  3. Aultman, William W. (1949). "Fresh Water from Salt". Engineering and Science Monthly. California Institute of Technology. XII (5): 4&5.