Iris hypothesis

Last updated

The iris hypothesis was a hypothesis proposed by Richard Lindzen and colleagues in 2001 that suggested increased sea surface temperature in the tropics would result in reduced cirrus clouds and thus more infrared radiation leakage from Earth's atmosphere. His study of observed changes in cloud coverage and modeled effects on infrared radiation released to space as a result seemed to support the hypothesis. [1] This suggested infrared radiation leakage was hypothesized to be a negative feedback in which an initial warming would result in an overall cooling of the surface.

Contents

The idea of the iris effect of cirrus clouds in trapping outgoing radiation was reasonable, but it ignored the larger compensating effect on the blocking of incoming sun's rays, and effects of changes in altitude of clouds. [2] :92 [3]  Moreover, a number of errors were found in the papers. [4] [5]  For this reason, the iris effect no longer plays a role in the current scientific consensus on climate change.

Scientific discussion

Scientists subsequently tested the hypothesis. Some concluded that there was no evidence supporting the hypothesis. [3] Others found evidence suggesting that increased sea surface temperature (SST) in the tropics did indeed reduce cirrus clouds but found that the effect was nonetheless a positive climate feedback rather than the negative feedback that Lindzen had hypothesized. [6] [7]

A later 2007 study conducted by Roy Spencer et al. using updated satellite data potentially supported the iris hypothesis. [8] In 2011, Lindzen published another paper on this topic. [9] This work has been described as "gravely flawed and its results wrong on multiple fronts. Their choice of observational periods distorted the results and underscored the defective nature of their analysis." [2] :92 [5]

In his memoirs in 2023, Kevin E. Trenberth rebutted the Iris hypothesis in strong words: [2] :92

"On the science front, Lindzen made great waves with a widely touted paper on possibilities that might nullify global warming (Lindzen et al. 2001) hyping an iris effect that would allow more longwave radiation escape to space as more widespread subsidence occurred as a consequence of stronger convection with increased heating. The idea of the iris effect was reasonable in of itself, but it focused only on the role of the areal extent of tropical cirrus on the outgoing infrared radiation, with no accounting for the huge and largely compensating effects on incoming solar radiation, or changes in altitude. In terms of SST (sea surface temperature) response, the solar effects are greater!"

In other words, Trenberth said that the concept itself was not necessarily wrong but very much incomplete. Furthermore, he pointed out that Lindzen's papers on this topic had substantial errors in them. [5]

In 2015, a paper was published which again suggested the possibility of an "Iris Effect". [10] It also proposed what it called a "plausible physical mechanism for an iris effect." In 2017, a paper was published which found that "tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency". [11]

See also

Related Research Articles

<span class="mw-page-title-main">Greenhouse effect</span> Atmospheric phenomenon causing planetary warming

The greenhouse effect occurs when greenhouse gases in a planet's atmosphere trap some of the heat radiated from the planet's surface, raising its temperature. This process happens because stars emit shortwave radiation that passes through greenhouse gases, but planets emit longwave radiation that is partly absorbed by greenhouse gases. That difference reduces the rate at which a planet can cool off in response to being warmed by its host star. Adding to greenhouse gases further reduces the rate a planet emits radiation to space, raising its average surface temperature.

<span class="mw-page-title-main">Satellite temperature measurement</span> Measurements of atmospheric, land surface or sea temperature by satellites.

Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.

<span class="mw-page-title-main">Cirrus cloud</span> Genus of atmospheric cloud

Cirrus is a genus of high cloud made of ice crystals. Cirrus clouds typically appear delicate and wispy with white strands. Cirrus are usually formed when warm, dry air rises, causing water vapor deposition onto rocky or metallic dust particles at high altitudes. Globally, they form anywhere between 4,000 and 20,000 meters above sea level, with the higher elevations usually in the tropics and the lower elevations in more polar regions.

<span class="mw-page-title-main">Climate model</span> Quantitative methods used to simulate climate

Numerical climate models use quantitative methods to simulate the interactions of the important drivers of climate, including atmosphere, oceans, land surface and ice. They are used for a variety of purposes from study of the dynamics of the climate system to projections of future climate. Climate models may also be qualitative models and also narratives, largely descriptive, of possible futures.

<span class="mw-page-title-main">Cloud albedo</span> Fraction of incoming sunlight reflected by clouds

Cloud albedo is a measure of the albedo or reflectivity of a cloud. Clouds regulate the amount of solar radiation absorbed by a planet and its solar surface irradiance. Generally, increased cloud cover correlates to a higher albedo and a lower absorption of solar energy. Cloud albedo strongly influences the Earth's energy budget, accounting for approximately half of Earth's albedo. Cloud albedo depends on the total mass of water, the size and shape of the droplets or particles and their distribution in space. Thick clouds reflect a large amount of incoming solar radiation, translating to a high albedo. Thin clouds tend to transmit more solar radiation and, therefore, have a low albedo. Changes in cloud albedo caused by variations in cloud properties have a significant effect on global climate.

<span class="mw-page-title-main">Cloud feedback</span> Type of climate change feedback mechanism

Cloud feedback is a type of climate change feedback that has been difficult to quantify in contemporary climate models. It can affect the magnitude of internally generated climate variability or they can affect the magnitude of climate change resulting from external radiative forcings. Cloud representations vary among global climate models, and small changes in cloud cover have a large impact on the climate.

Richard Siegmund Lindzen is an American atmospheric physicist known for his work in the dynamics of the middle atmosphere, atmospheric tides, and ozone photochemistry. He is the author of more than 200 scientific papers. From 1972 to 1982, he served as the Gordon McKay Professor of Dynamic Meteorology at Harvard University. In 1983, he was appointed as the Alfred P. Sloan Professor of Meteorology at the Massachusetts Institute of Technology, where he would remain until his retirement in 2013. Lindzen has disputed the scientific consensus on climate change and criticizes what he has called "climate alarmism".

<span class="mw-page-title-main">Roy Spencer (meteorologist)</span>

Roy Warren Spencer is an American meteorologist. He is a principal research scientist at the University of Alabama in Huntsville, and the U.S. Science Team leader for the Advanced Microwave Scanning Radiometer (AMSR-E) on NASA's Aqua satellite. He has served as senior scientist for climate studies at NASA's Marshall Space Flight Center. He is known for his satellite-based temperature monitoring work, for which he was awarded the American Meteorological Society's Special Award. Spencer disagrees with the scientific consensus that most global warming in the past 50 years is the result of human activity, instead believing that anthropogenic greenhouse gas emissions have caused some warming, but that influence is small compared to natural variations in global average cloud cover.

<span class="mw-page-title-main">Clouds and the Earth's Radiant Energy System</span> NASA satellite climate data instruments

Clouds and the Earth's Radiant Energy System (CERES) is an on-going NASA climatological experiment from Earth orbit. The CERES are scientific satellite instruments, part of the NASA's Earth Observing System (EOS), designed to measure both solar-reflected and Earth-emitted radiation from the top of the atmosphere (TOA) to the Earth's surface. Cloud properties are determined using simultaneous measurements by other EOS instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Results from the CERES and other NASA missions, such as the Earth Radiation Budget Experiment (ERBE), could enable nearer to real-time tracking of Earth's energy imbalance (EEI) and better understanding of the role of clouds in global climate change.

Nephology is the study of clouds and cloud formation. British meteorologist Luke Howard was a major researcher within this field, establishing a cloud classification system. While this branch of meteorology still exists today, the term nephology, or nephologist is rarely used. The term came into use at the end of the nineteenth century, and fell out of common use by the middle of the twentieth. Recently, interest in nephology has increased as some meteorologists have begun to focus on the relationship between clouds and global warming, which is a source of uncertainty regarding "estimates and interpretations of the Earth’s changing energy budget."

<span class="mw-page-title-main">Earth's energy budget</span> Accounting of the energy flows which determine Earths surface temperature and drive its climate

Earth's energy budget accounts for the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also accounts for how energy moves through the climate system. Because the Sun heats the equatorial tropics more than the polar regions, received solar irradiance is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.

<span class="mw-page-title-main">Pacific decadal oscillation</span> Recurring pattern of climate variability

The Pacific decadal oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California.

A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating water into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation and continues to heat up until it can radiate outside of the absorption bands of the water vapour.

<span class="mw-page-title-main">Outgoing longwave radiation</span> Energy transfer mechanism which enables planetary cooling

In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It may also be referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.

Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances. The most emblematic teleconnection is that linking sea-level pressure at Tahiti and Darwin, Australia, which defines the Southern Oscillation. Another well-known teleconnection links the sea-level pressure over Iceland with the one over the Azores, traditionally defining the North Atlantic Oscillation (NAO).

<span class="mw-page-title-main">History of climate change science</span> Aspect of the history of science

The history of the scientific discovery of climate change began in the early 19th century when ice ages and other natural changes in paleoclimate were first suspected and the natural greenhouse effect was first identified. In the late 19th century, scientists first argued that human emissions of greenhouse gases could change Earth's energy balance and climate. The existence of the greenhouse effect, while not named as such, was proposed as early as 1824 by Joseph Fourier. The argument and the evidence were further strengthened by Claude Pouillet in 1827 and 1838. In 1856 Eunice Newton Foote demonstrated that the warming effect of the sun is greater for air with water vapour than for dry air, and the effect is even greater with carbon dioxide.

<span class="mw-page-title-main">Climate change feedbacks</span> Feedback related to climate change

Climate change feedbacks are effects of global warming that amplify or diminish the effect of forces that initially cause the warming. Positive feedbacks enhance global warming while negative feedbacks weaken it. Feedbacks are important in the understanding of climate change because they play an important part in determining the sensitivity of the climate to warming forces. Climate forcings and feedbacks together determine how much and how fast the climate changes. Large positive feedbacks can lead to tipping points—abrupt or irreversible changes in the climate system—depending upon the rate and magnitude of the climate change.

The Jule G. Charney Award is the American Meteorological Society's award granted to "individuals in recognition of highly significant research or development achievement in the atmospheric or hydrologic sciences". The prize was originally known as the Second Half Century Award, and first awarded to mark to fiftieth anniversary of the society.

<span class="mw-page-title-main">Fixed anvil temperature hypothesis</span> Idea that the temperature at the top of anvil clouds does not depend on Earth surface temperature

Fixed anvil temperature hypothesis is a physical hypothesis that describes the response of cloud radiative properties to rising surface temperatures. It presumes that the temperature at which radiation is emitted by anvil clouds is constrained by radiative processes and thus does not change in response to surface warming. Since the amount of radiation emitted by clouds is a function of their temperature, it implies that it does not increase with surface warming and thus a warmer surface does not increase radiation emissions by cloud tops. The mechanism has been identified both in climate models and observations of cloud behaviour, it affects how much the world heats up for each extra tonne of greenhouse gas in the atmosphere. However, some evidence suggests that it may be more correctly formulated as decreased anvil warming rather than no anvil warming.

References

  1. Lindzen, Richard S.; Chou, Ming-Dah; Hou, Arthur Y. (2001). "Does the Earth have an adaptive infrared iris?" (PDF). Bull. Amer. Meteor. Soc. 82 (3): 417–432. Bibcode:2001BAMS...82..417L. doi:10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2. hdl: 2060/20000081750 .
  2. 1 2 3 Trenberth, K. E. (2023). A personal tale of the development of Climate Science. The life and times of Kevin Trenberth. ISBN   978-0-473-68694-9.
  3. 1 2 Hartmann, Dennis L.; Michelsen, Marc L. (2002). "No evidence for iris". Bull. Amer. Meteor. Soc. 83 (2): 249–254. Bibcode:2002BAMS...83..249H. doi: 10.1175/1520-0477(2002)083<0249:NEFI>2.3.CO;2 .
  4. Trenberth, Kevin E.; Fasullo, John T.; O'Dell, Chris; Wong, Takmeng (2010). "Relationships between tropical sea surface temperature and top‐of‐atmosphere radiation". Geophysical Research Letters. 37 (3). Bibcode:2010GeoRL..37.3702T. doi: 10.1029/2009GL042314 . ISSN   0094-8276. S2CID   6402800.
  5. 1 2 3 Trenberth, Kevin E.; Fasullo, John T.; Abraham, John P. (2011). "Issues in Establishing Climate Sensitivity in Recent Studies". Remote Sensing. 3 (9): 2051–2056. Bibcode:2011RemS....3.2051T. doi: 10.3390/rs3092051 . ISSN   2072-4292.
  6. Fu, Q.; Baker, M.; Hartmann, D. L. (2002). "Tropical cirrus and water vapor: an effective Earth infrared iris feedback?" (PDF). Atmos. Chem. Phys. 2 (1): 31–37. Bibcode:2002ACP.....2...31F. doi: 10.5194/acp-2-31-2002 .
  7. Lin, Bing; Wielicki, Bruce A.; Chambers, Lin H.; Hu, Yongxiang; Xu, Kuan-Man (2002). "The Iris Hypothesis: A Negative or Positive Cloud Feedback?". J. Clim. 15 (1): 3–7. Bibcode:2002JCli...15....3L. doi: 10.1175/1520-0442(2002)015<0003:TIHANO>2.0.CO;2 .
  8. Spencer, Roy W.; Braswell, William D.; Christy, John R.; Hnilo, Justin (2007). "Cloud and radiation budget changes associated with tropical intraseasonal oscillations". Geophys. Res. Lett. 34 (15): L15707. Bibcode:2007GeoRL..3415707S. doi: 10.1029/2007GL029698 .
  9. Lindzen R.S.; Y.-S. Choi (2011). "On the observational determination of climate sensitivity and its implications" (PDF). Asia-Pacific J. Atmos. Sci. 47 (4): 377–390. Bibcode:2011APJAS..47..377L. CiteSeerX   10.1.1.167.11 . doi:10.1007/s13143-011-0023-x. S2CID   9278311. Archived from the original (PDF) on 2019-01-04. Retrieved 2014-01-11.
  10. Mauritsen T.; Stevens B. (2015). "Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models". Nature Geoscience. 8 (5): 346–351. Bibcode:2015NatGe...8..346M. doi: 10.1038/ngeo2414 .
  11. Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei (2017). "Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data". Journal of Geophysical Research: Atmospheres. 122 (11): 2016JD025827. Bibcode:2017JGRD..122.5917C. doi:10.1002/2016JD025827. ISSN   2169-8996. S2CID   134384103.