Obesity-associated morbidity

Last updated
Obesity-associated morbidity
Medical complications of obesity.png
Obesity may cause a number of medical complications which negatively impact peoples' quality of life.
Specialty Endocrinology(other specialties)
Death rate from obesity, 2019 Death-rate-from-obesity.svg
Death rate from obesity, 2019

Obesity is a risk factor for many chronic physical and mental illnesses.

Contents

The health effects of being overweight but not obese are controversial, with some studies showing that the mortality rate for individuals who are classified as overweight (BMI 25.0 to 29.9) may actually be lower than for those with an ideal weight (BMI 18.5 to 24.9). [1] Health risks for those who are overweight may be decreasing because of improvements in medical care. [2] Some obesity-associated medical conditions may be the result of stress caused by medical discrimination against people who are obese, rather than the direct effects of obesity, and some may be exacerbated by the relatively poor healthcare received by people who are obese. [3]

Medical discrimination

Because of the social stigma of obesity, people who are obese may receive poorer healthcare than people within the normal BMI weight range, potentially contributing to the relationship between obesity and poor health outcomes. [4] [5] People who experience weight-related discrimination, irrespective of their actual weight status, similarly have poorer health outcomes than those who do not experience weight-related discrimination. [6] People who are obese are also less likely to seek medical care than people who are not obese, [7] even if the weight gain is caused by medical problems. Peter Muennig, a professor in the Department of Health Policy and Management at Columbia University, [8] has proposed that obesity-associated medical conditions may be caused "not from adiposity alone, but also from the psychological stress induced by the social stigma associated with being obese". [3]

Cardiological risks

Heart attack (myocardial infarction) Blausen 0463 HeartAttack.png
Heart attack (myocardial infarction)

Body weight is not considered to be an independently predictive risk factor for cardiovascular disease by current (as of 2014) risk assessment tools. [9] Mortality from cardiovascular disease has decreased despite increases in obesity, [10] and at least one clinical trial was stopped early because the weight loss intervention being tested did not reduce cardiovascular disease. [11]

Ischemic heart disease

Abdominal obesity is associated with cardiovascular diseases including angina and myocardial infarction. [12] [13] However, overall obesity (as measured by BMI) may lead to false diagnoses of myocardial infarction and may decrease mortality after acute myocardial infarction. [13]

In 2008, European guidelines concluded that 35% of ischemic heart disease among adults in Europe is due to obesity. [14]

Congestive heart failure

Having obesity is associated to about 11% of heart failure cases in males and 14% in females. [15] [ verification needed ]

High blood pressure

More than 85% of those with hypertension have a BMI greater than 25, although diet is probably a more important factor than body weight. [15] Risk estimates indicate that at least two-thirds of people with hypertension can be directly attributed to obesity. [16] The association between obesity and hypertension has been found in animal and clinical studies, [17] which have suggested that there are multiple potential mechanisms for obesity-induced hypertension. These mechanisms include the activation of the sympathetic nervous system as well as the activation of the renin–angiotensin–aldosterone system. [18] As of 2007, it was unclear whether there is an association between hypertension and obesity in children, but there is little direct evidence that blood pressure has increased despite increases in pediatric overweight. [19]

Abnormal cholesterol levels

Obesity is associated with increased levels of LDL cholesterol and lower levels of HDL cholesterol in the blood. [15] [2]

Deep vein thrombosis and pulmonary embolism

Obesity increases one's risk of venous thromboembolism by approximately 2.3 fold. [20] [21]

Dermatological risks

Obesity is associated with the incidence of stretch marks, acanthosis nigricans, lymphedema, cellulitis, hirsutism, and intertrigo. [22] [23]

Endocrine risks

Gynecomastia in an obese male Adipomastia 001.jpg
Gynecomastia in an obese male

Diabetes mellitus

The link between obesity and type 2 diabetes is so strong that researchers in the 1970s started calling it "diabesity". [15] Excess weight is behind 64% of cases of diabetes in males and 77% of cases in females. [24]

Gynecomastia

In some individuals, obesity can be associated with elevated peripheral conversion of androgens into estrogens. [25]

Gastrointestinal risks

Gastroesophageal reflux disease

Several studies have shown that the frequency and severity of GERD symptoms increase with BMI, such that people who are underweight have the fewest GERD symptoms, [26] and people who are severely obese have the most GERD symptoms. [26] [27] However, most studies find that GERD symptoms are not improved by nonsurgical weight loss. [26] [28]

Cholelithiasis (gallstones)

Obesity causes the amount of cholesterol in bile to rise, in turn the formation of stone can occur [15] [29]

Reproductive system (or genital system)

Polycystic ovarian syndrome (PCOS)

Due to its association with insulin resistance, the risk of obesity increases with polycystic ovarian syndrome (PCOS). In the US approximately 60% of patients with PCOS have a BMI greater than 30. It remains uncertain whether PCOS contributes to obesity, or the reverse. [30] [31]

Infertility

Obesity can lead to infertility in both males and females. This is primarily due to excess estrogen interfering with normal ovulation in females [15] and altering spermatogenesis in males. [32] It is believed to cause 6% of primary infertility. [15] [33] A review in 2013 came to the result that obesity increases the risk of oligospermia and azoospermia in males, with an of odds ratio 1.3. [34] Being morbidly obese increases the odds ratio to 2.0. [34]

Complications of pregnancy

Obesity is related to many complications in pregnancy including: haemorrhage, infection, increased hospital stays for the mother, and increased NICU requirements for the infant. [35] Obese females also have increased risk of preterm births and low birth weight infants. [36]

Obese females have more than twice the rate of C-sections compared to females of "normal" weight. [37] Some have suggested that this may be due in part to the social stigma of obesity. [38]

Birth defects

Those who are obese during pregnancy have a greater risk of having a child with a number of congenital malformations including: neural tube defects such as anencephaly and spina bifida, cardiovascular anomalies, including septal anomalies, cleft lip and palate, anorectal malformation, limb reduction anomalies, and hydrocephaly. [39]

Intrauterine fetal death

Maternal obesity is associated with an increased risk of intrauterine fetal death. [33]

Buried penis

Excess body fat in morbid obesity can, in some cases, completely obscure or "bury" the penis. [40]

Neurological risks

MCA territory infarct (stroke) MCA Territory Infarct.svg
MCA territory infarct (stroke)

Stroke

Ischemic stroke is increased in both men and women who are obese. [15]

Meralgia paresthetica

Meralgia paresthetica is a neuropathic pain or numbness of the thighs, sometimes associated with obesity. [41]

Migraines

Migraine (and headaches in general) is comorbid with obesity. [42] The risk of migraine rises 50% by BMI of 30 kg/m2 and 100% by BMI of 35 kg/m2. [42] The causal connection remains unclear. [43]

Carpal tunnel syndrome

The risk of carpal tunnel syndrome is estimated to rise 7.4% for each 1 kg/m2 increase of body mass index. [44]

Dementia

One review found that those who are obese do not have a significantly higher rate of dementia than those with "normal" weight. [45]

Idiopathic intracranial hypertension

Idiopathic intracranial hypertension, or unexplained high pressure in the cranium, is a rare condition that can cause visual impairment, frequent severe headache, and tinnitus. It is most commonly seen in obese women, and the incidence of idiopathic intracranial hypertension is increasing along with increases in the number of people who are obese. [46] [47]

Multiple sclerosis

Obese female individuals at 18 years of age have a greater than twofold increased risk of multiple sclerosis compared to females with a BMI between 18.5 and 20.9. [48] Female individuals who are underweight at age 18 have the lowest risk of multiple sclerosis. However, body weight as an adult was not associated with risk of multiple sclerosis. [48]

Cancer

Hepatocellular carcinoma 1 Hepatocellular carcinoma 1.jpg
Hepatocellular carcinoma 1

Many cancers occur at increased frequency in those who are overweight or obese. A study from the United Kingdom found that approximately 5% of cancer is due to excess weight. [49] These cancers include: [50]

A high body mass index (BMI) is associated with a higher risk of developing ten common cancers including 41% of uterine cancers and at least 10% of gallbladder, kidney, liver and colon cancers in the UK. [51] For those undergoing surgery for cancer, obesity is also associated with an increased risk of major postoperative complications compared with those of "normal" weight. [52]

Psychiatric risks

Risk of death from suicide decreases with increased body mass index in the United States. Relationship between bmi and suicide.png
Risk of death from suicide decreases with increased body mass index in the United States.

Depression

Obesity has been associated with depression, likely due to social factors rather than physical effects of obesity. [15] However, it is possible that obesity is caused by depression (due to reduced physical activity or, in some people, increases in appetite). [54] Obesity-related disabilities may also lead to depression in some people. [54] Repeated failed attempts at weight loss might also lead to depression. [54]

The association between obesity and depression is strongest in those who are more severely obese, those who are younger, and in women. [54] Suicide rate however decreases with increased BMI. [53] Similarly, weight loss through bariatric surgery is associated with increased risk of suicide. [55]

Social stigmatization

Obese people draw negative reactions from others, and people are less willing to help obese individuals in any situation due to social stigmatization. [56] People who are obese also experience fewer educational and career opportunities, on average earn a lesser income, [57] and generally receive poorer health care and treatment [5] than individuals of "normal" weight.

Respiratory system

Obstructive sleep apnea

Obesity is a risk factor for obstructive sleep apnea. [15] [58]

Obesity hypoventilation syndrome

CPAP machine commonly used in OHS Cpap-example.jpg
CPAP machine commonly used in OHS

Obesity hypoventilation syndrome is defined as the combination of obesity, hypoxia during sleep, and hypercapnia during the day, resulting from hypoventilation. [59]

Chronic lung disease

Obesity is associated with a number of chronic lung diseases, including asthma and COPD. [58] It is believed that a systemic pro-inflammatory state induced by some causes of obesity may contribute to airway inflammation, leading to asthma. [60]

Complications during general anaesthesia

Obesity significantly reduces and stiffens the functional lung volume, requiring specific strategies for respiratory management under general anesthesia. [61]

Obesity and asthma

The low grade systemic inflammation of obesity has been shown to worsen lung function in asthma and increase the risk of developing an asthma exacerbation. [62]

COVID-19

A study in England found a linear increase in severe COVID-19 resulting in hospitalisation and death for those whose BMI is above 23, and a linear increase in admission to an intensive care unit across the whole BMI spectrum. The difference in COVID-19 risk from having a high BMI was most pronounced in people aged under 40, or who were black. [63] A study from Mexico found that obesity alone was responsible for a 2.7 times increased risk of death from COVID-19, while comorbidities with diabetes, immunosuppression or high blood pressure increased the risk further. [64] A study from the United States found that there was an inverse correlation between age and BMI of COVID patients; the younger the age group, the higher its BMI. [65]

Rheumatological and orthopedic risks

Gout Gout2010.JPG
Gout

Gout

Compared to men with a BMI of 21–22.9, men with a BMI of 30–34.9 have 2.33 times more gout, and men with a BMI ≥ 35 have 2.97 times more gout. Weight loss decreases these risks. [66]

Poor mobility

There is a strong association between obesity and musculoskeletal pain and disability. [67]

Osteoarthritis

Increased rates of arthritis are seen in both weight-bearing and non-weight-bearing joints. [15] Weight loss and exercise act to reduce the risk of osteoarthritis. [68]

Low back pain

Obese individuals are twice to four times more likely to have lower back pain than their "normal" weight peers. [69]

Traumatic injury

In females, low BMI is a risk factor for osteoporotic fractures in general. [70] In contrast, obesity is a protective factor for most osteoporotic fractures. [70]

Urological and nephrological risks

Urinary system Urinary system 00000.gif
Urinary system

Urinary incontinence

Urge, stress, and mixed incontinence all occur at higher rates in obese people. [71] The rates of urinary incontinence are about double that found in the "normal" weight population. [72] Urinary incontinence improves with weight loss. [73]

Chronic kidney disease

Obesity increases one's risk of chronic kidney disease by three to four times. [74]

Hypogonadism

In males, obesity and metabolic syndrome both increase estrogen and adipokine production. This reduces gonadotropin-releasing hormone, in turn reducing both luteinizing hormone and follicle stimulating hormone. The result is reduction of the testis' production of testosterone and a further increase in adipokine levels. This then feeds back to cause further weight gain. [75]

Erectile dysfunction

Obese male individuals can experience erectile dysfunction, and weight loss can improve their sexual functioning. [76] [77]

See also

Related Research Articles

<span class="mw-page-title-main">Body mass index</span> Relative weight based on mass and height

Body mass index (BMI) is a value derived from the mass (weight) and height of a person. The BMI is defined as the body mass divided by the square of the body height, and is expressed in units of kg/m2, resulting from mass in kilograms (kg) and height in metres (m).

<span class="mw-page-title-main">Metabolic syndrome</span> Medical condition

Metabolic syndrome is a clustering of at least three of the following five medical conditions: abdominal obesity, high blood pressure, high blood sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL).

<span class="mw-page-title-main">Abdominal obesity</span> Excess fat around the stomach and abdomen

Abdominal obesity, also known as central obesity and truncal obesity, is the human condition of an excessive concentration of visceral fat around the stomach and abdomen to such an extent that it is likely to harm its bearer's health. Abdominal obesity has been strongly linked to cardiovascular disease, Alzheimer's disease, and other metabolic and vascular diseases.

<span class="mw-page-title-main">Obesity</span> Medical condition in which excess body fat harms health

Obesity is a medical condition, sometimes considered a disease, in which excess body fat has accumulated to such an extent that it can potentially have negative effects on health. People are classified as obese when their body mass index (BMI)—a person's weight divided by the square of the person's height—is over 30 kg/m2; the range 25–30 kg/m2 is defined as overweight. Some East Asian countries use lower values to calculate obesity. Obesity is a major cause of disability and is correlated with various diseases and conditions, particularly cardiovascular diseases, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis.

<span class="mw-page-title-main">Weight loss</span> Reduction of the total body mass

Weight loss, in the context of medicine, health, or physical fitness, refers to a reduction of the total body mass, by a mean loss of fluid, body fat, or lean mass. Weight loss can either occur unintentionally because of malnourishment or an underlying disease, or from a conscious effort to improve an actual or perceived overweight or obese state. "Unexplained" weight loss that is not caused by reduction in calorific intake or increase in exercise is called cachexia and may be a symptom of a serious medical condition.

<span class="mw-page-title-main">Weight cycling</span> Cyclical loss and gain of weight

Weight cycling, also known as yo-yo dieting, is the repeated loss and gain of weight, resembling the up-down motion of a yo-yo. The purpose of the temporary weight loss the yo-yo diet delivers is to lure the dieting into the illusion of success, but due to the nature of the diet, they are impossible to sustain, therefore the dieter gives up, often due to hunger or discomfort, and gains the weight back. The dieter then seeks to lose the regained weight, and the cycle begins again. Other individuals cycle weight deliberately in service of bodybuilding or athletic goals. Weight cycling contributes to increased risk of later obesity, due to repeated signals being sent to the body signalling that it's in starvation mode; therefore it learns to be better and better at storing fat, and increases the strain on vital organs, likely promoting cardiometabolic disease.

Bariatrics is a discipline that deals with the causes, prevention, and treatment of obesity, encompassing both obesity medicine and bariatric surgery.

<span class="mw-page-title-main">Childhood obesity</span> Obesity in children

Childhood obesity is a condition where excess body fat negatively affects a child's health or well-being. As methods to determine body fat directly are difficult, the diagnosis of obesity is often based on BMI. Due to the rising prevalence of obesity in children and its many adverse health effects it is being recognized as a serious public health concern. The term overweight rather than obese is often used when discussing childhood obesity, as it is less stigmatizing, although the term overweight can also refer to a different BMI category. The prevalence of childhood obesity is known to differ by sex and gender.

Bariatric surgery is a medical term for surgical procedures used to manage obesity and obesity-related conditions. Long term weight loss with bariatric surgery may be achieved through alteration of gut hormones, physical reduction of stomach size, reduction of nutrient absorption, or a combination of these. Standard of care procedures include Roux en-Y bypass, sleeve gastrectomy, and biliopancreatic diversion with duodenal switch, from which weight loss is largely achieved by altering gut hormone levels responsible for hunger and satiety, leading to a new hormonal weight set point.

The obesity paradox is the finding in some studies of a lower mortality rate for overweight or obese people within certain subpopulations. The paradox has been observed in people with cardiovascular disease and cancer. Explanations for the paradox range from excess weight being protective to the statistical association being caused by methodological flaws such as confounding, detection bias, reverse causality, or selection bias.

<span class="mw-page-title-main">Obesity in the United States</span>

Obesity is common in the United States and is a major health issue associated with numerous diseases, specifically an increased risk of certain types of cancer, coronary artery disease, type 2 diabetes, stroke, and cardiovascular disease, as well as significant increases in early mortality and economic costs.

<span class="mw-page-title-main">Overweight</span> Above a weight considered healthy

Being overweight is having more body fat than is optimally healthy. Being overweight is especially common where food supplies are plentiful and lifestyles are sedentary.

Intermittent fasting is any of various meal timing schedules that cycle between voluntary fasting and non-fasting over a given period. Methods of intermittent fasting include alternate-day fasting, periodic fasting, such as the 5:2 diet, and daily time-restricted eating.

<span class="mw-page-title-main">Preventable causes of death</span> Causes of death that could have been avoided

Preventable causes of death are causes of death related to risk factors which could have been avoided. The World Health Organization has traditionally classified death according to the primary type of disease or injury. However, causes of death may also be classified in terms of preventable risk factors—such as smoking, unhealthy diet, sexual behavior, and reckless driving—which contribute to a number of different diseases. Such risk factors are usually not recorded directly on death certificates, although they are acknowledged in medical reports.

<span class="mw-page-title-main">Classification of obesity</span> Overview of the classification of the condition of obesity

Obesity classification is a ranking of obesity, the medical condition in which excess body fat has accumulated to the extent that it has an adverse effect on health. The World Health Organization (WHO) classifies obesity by body mass index (BMI). BMI is further evaluated in terms of fat distribution via the waist–hip ratio and total cardiovascular risk factors. In children, a healthy weight varies with sex and age, and obesity determination is in relation to a historical normal group.

<span class="mw-page-title-main">Weight management</span> Techniques for maintaining body weight

Weight management refers to behaviors, techniques, and physiological processes that contribute to a person's ability to attain and maintain a healthy weight. Most weight management techniques encompass long-term lifestyle strategies that promote healthy eating and daily physical activity. Moreover, weight management involves developing meaningful ways to track weight over time and to identify the ideal body weights for different individuals.

Management of obesity can include lifestyle changes, medications, or surgery. Although many studies have sought effective interventions, there is currently no evidence-based, well-defined, and efficient intervention to prevent obesity.

Social stigma of obesity is bias or discriminatory behaviors targeted at overweight and obese individuals because of their weight and a high body fat percentage. Such social stigmas can span one's entire life, as long as excess weight is present, starting from a young age and lasting into adulthood. Studies also indicate overweight and obese individuals experience higher levels of stigma compared to other people. Stigmatization of obesity is associated with increased risk of obesity and increased mortality and morbidity.

A person's waist-to-height ratio – occasionally written WHtR – or called waist-to-stature ratio (WSR), is defined as their waist circumference divided by their height, both measured in the same units. It is used as a predictor of obesity-related cardiovascular disease. The WHtR is a measure of the distribution of body fat. Higher values of WHtR indicate higher risk of obesity-related cardiovascular diseases; it is correlated with abdominal obesity.

The association between obesity, as defined by a body mass index of 30 or higher, and risk of a variety of types of cancer has received a considerable amount of attention in recent years. Obesity has been associated with an increased risk of esophageal cancer, pancreatic cancer, colorectal cancer, breast cancer, endometrial cancer, kidney cancer, thyroid cancer, liver cancer and gallbladder cancer. Obesity may also lead to increased cancer-related mortality. Obesity has also been described as the fat tissue disease version of cancer, where common features between the two diseases were suggested for the first time.

References

  1. Flegal, K. M.; Graubard, B. I.; Williamson, D. F.; Gail, M. H. (2005). "Excess Deaths Associated With Underweight, Overweight, and Obesity". JAMA . 293 (15): 1861–1867. doi:10.1001/jama.293.15.1861. PMID   15840860.
  2. 1 2 Malnick, S. D. H.; Knobler, H. (2006-09-01). "The medical complications of obesity". QJM. 99 (9): 565–579. doi: 10.1093/qjmed/hcl085 . ISSN   1460-2725. PMID   16916862.
  3. 1 2 Muennig, P (2008). "The body politic: the relationship between stigma and obesity-associated disease". BMC Public Health. 8: 128. doi: 10.1186/1471-2458-8-128 . PMC   2386473 . PMID   18426601.
  4. Phelan, S. M.; Burgess, D. J.; Yeazel, M. W.; Hellerstedt, W. L.; Griffin, J. M.; van Ryn, M. (April 2015). "Impact of weight bias and stigma on quality of care and outcomes for patients with obesity". Obesity Reviews. 16 (4): 319–326. doi:10.1111/obr.12266. PMC   4381543 . PMID   25752756.
  5. 1 2 Puhl, Rebecca M.; Heuer, Chelsea A. (2009-05-01). "The Stigma of Obesity: A Review and Update". Obesity. 17 (5): 941–964. doi:10.1038/oby.2008.636. ISSN   1930-739X. PMID   19165161. S2CID   152352.
  6. Schafer, Markus H.; Ferraro, Kenneth F. (2011-03-01). "The Stigma of Obesity Does Perceived Weight Discrimination Affect Identity and Physical Health?". Social Psychology Quarterly. 74 (1): 76–97. doi:10.1177/0190272511398197. ISSN   0190-2725. S2CID   43671749.
  7. Puhl, Rebecca M.; King, Kelly M. (2013). "Weight discrimination and bullying". Best Practice & Research Clinical Endocrinology & Metabolism. 27 (2): 117–127. doi:10.1016/j.beem.2012.12.002. PMID   23731874.
  8. Muennig, Peter (7 August 2018). "Policy - Peter Muennig". www.publichealth.columbia.edu. Columbia University. Archived from the original on 21 May 2022. Retrieved 22 May 2022.
  9. Morris (2014). "Review of Clinical Practice Guidelines for the Management of LDL-Related Risk". Journal of the American College of Cardiology. 64 (2): 196–206. doi: 10.1016/j.jacc.2014.05.015 . PMID   25011724.
  10. Flegal; Carroll; Kit; Ogden (2012). "Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010". JAMA. 307 (5): 491–497. doi:10.1001/jama.2012.39. PMID   22253363. S2CID   7396422.
  11. The Look AHEAD Research Group (2013). "Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes". New England Journal of Medicine. 369 (2): 145–154. doi:10.1056/NEJMoa1212914. PMC   3791615 . PMID   23796131.
  12. Poirier P, Giles TD, Bray GA, et al. (May 2006). "Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss". Arteriosclerosis, Thrombosis, and Vascular Biology . 26 (5): 968–976. CiteSeerX   10.1.1.508.7066 . doi:10.1161/01.ATV.0000216787.85457.f3. PMID   16627822. S2CID   6052584.
  13. 1 2 Yusuf S, Hawken S, Ounpuu S, et al. (2004). "Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study". The Lancet . 364 (9438): 937–952. doi:10.1016/S0140-6736(04)17018-9. hdl: 10983/21615 . PMID   15364185. S2CID   30811593.
  14. Tsigos C, Hainer V, Basdevant A, et al. (2008). "Management of obesity in adults: European clinical practice guidelines". Obesity Facts. 1 (2): 106–116. doi:10.1159/000126822. PMC   6452117 . PMID   20054170. as PDF Archived 2015-10-17 at the Wayback Machine
  15. 1 2 3 4 5 6 7 8 9 10 11 Haslam DW, James WP (October 2005). "Obesity". The Lancet. 366 (9492): 1197–209. doi:10.1016/S0140-6736(05)67483-1. PMID   16198769. S2CID   208791491.  via ScienceDirect  (Subscription may be required or content may be available in libraries.)
  16. Narkiewicz, Krzysztof (2005-11-25). "Obesity and hypertension--the issue is more complex than we thought". Nephrology, Dialysis, Transplantation. 21 (2): 264–267. doi: 10.1093/ndt/gfi290 . ISSN   0931-0509. PMID   16311261.
  17. Hall, John E. (2003). "The kidney, hypertension, and obesity". Hypertension. 41 (3 Pt 2): 625–633. doi: 10.1161/01.HYP.0000052314.95497.78 . PMID   12623970.
  18. Rahmouni K, Correia ML, Haynes WG, Mark AL (January 2005). "Obesity-associated hypertension: new insights into mechanisms". Hypertension. 45 (1): 9–14. doi:10.1161/01.HYP.0000151325.83008.b4. PMID   15583075.
  19. Chiolero A, Bovet P, Paradis G, Paccaud F (March 2007). "Has blood pressure increased in children in response to the obesity epidemic?". Pediatrics. 119 (3): 544–553. doi:10.1542/peds.2006-2136. PMID   17332208. S2CID   46223377.
  20. Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW (January 2008). "Cardiovascular risk factors and venous thromboembolism: a meta-analysis". Circulation. 117 (1): 93–102. doi: 10.1161/CIRCULATIONAHA.107.709204 . PMID   18086925.
  21. Darvall KA, Sam RC, Silverman SH, Bradbury AW, Adam DJ (February 2007). "Obesity and thrombosis". European Journal of Vascular and Endovascular Surgery. 33 (2): 223–33. doi: 10.1016/j.ejvs.2006.10.006 . PMID   17185009.
  22. Yosipovitch G, DeVore A, Dawn A (June 2007). "Obesity and the skin: skin physiology and skin manifestations of obesity". Journal of the American Academy of Dermatology. 56 (6): 901–16, quiz 917–20. doi:10.1016/j.jaad.2006.12.004. PMID   17504714.
  23. Hahler B (June 2006). "An overview of dermatological conditions commonly associated with the obese patient". Ostomy Wound Management. 52 (6): 34–6, 38, 40 passim. PMID   16799182.
  24. Kopelman, Peter G.; Caterson, Ian D.; Stock, Michael J.; Dietz, William H. (2005). Clinical Obesity in Adults and Children. Blackwell. p. 493. ISBN   978-1-4051-1672-5. Archived from the original on 2023-01-12. Retrieved 2017-09-07.
  25. Johnson, Ruth E.; Murad, M. Hassan (2009-11-01). "Gynecomastia: Pathophysiology, Evaluation, and Management". Mayo Clinic Proceedings. 84 (11): 1010–1015. doi:10.4065/84.11.1010. ISSN   0025-6196. PMC   2770912 . PMID   19880691.
  26. 1 2 3 Anand G, Katz PO (2008). "Gastroesophageal reflux disease and obesity". Reviews in Gastroenterological Disorders. 8 (4): 233–239. PMID   19107097. Archived from the original on 2016-09-18. Retrieved 2009-01-14.
  27. Ayazi S, Hagen JA, Chan LS, et al. (August 2009). "Obesity and gastroesophageal reflux: quantifying the association between body mass index, esophageal acid exposure, and lower esophageal sphincter status in a large series of patients with reflux symptoms". Journal of Gastrointestinal Surgery. 13 (8): 1440–1447. doi:10.1007/s11605-009-0930-7. PMC   2710497 . PMID   19475461.
  28. Kjellin; Ramel; Rössner; Thor (1996). "Gastroesophageal reflux in obese patients is not reduced by weight reduction". Scandinavian Journal of Gastroenterology. 31 (11): 1047–1051. doi:10.3109/00365529609036885. PMID   8938895.
  29. "Gallstones". United States: National Institute of Diabetes and Digestive and Kidney Diseases. Archived from the original on 16 October 2016. Retrieved 13 May 2016.
  30. Samer El Hayek; Lynn Bitar; Layal H. Hamdar; Fadi G. Mirza; Georges Daoud (5 April 2016). "Poly Cystic Ovarian Syndrome: An Updated Overview". Frontiers in Physiology . 7: 124. doi: 10.3389/fphys.2016.00124 . PMC   4820451 . PMID   27092084.
  31. Kamangar; Okhovat; Schmidt; Beshay; Pasch; Cedars; Huddleston; Shinkai (2015). "Polycystic Ovary Syndrome: Special Diagnostic and Therapeutic Considerations for Children". Pediatric Dermatology. 32 (5): 571–578. doi:10.1111/pde.12566. PMID   25787290. S2CID   2132971.
  32. Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT (October 2008). "Impact of male obesity on infertility: a critical review of the current literature". Fertility and Sterility. 90 (4): 897–904. doi: 10.1016/j.fertnstert.2008.08.026 . PMID   18929048.
  33. 1 2 Arendas K, Qiu Q, Gruslin A (June 2008). "Obesity in pregnancy: pre-conceptional to postpartum consequences". Journal of Obstetrics and Gynaecology Canada. 30 (6): 477–488. doi:10.1016/s1701-2163(16)32863-8. PMID   18611299.
  34. 1 2 Sermondade, N.; Faure, C.; Fezeu, L.; et al. (2012). "BMI in relation to sperm count: An updated systematic review and collaborative meta-analysis". Human Reproduction Update. 19 (3): 221–231. doi:10.1093/humupd/dms050. PMC   3621293 . PMID   23242914. Archived from the original on 2015-12-23.
  35. Heslehurst N, Simpson H, Ells LJ, et al. (November 2008). "The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta-analysis". Obesity Reviews. 9 (6): 635–683. doi:10.1111/j.1467-789X.2008.00511.x. PMID   18673307. S2CID   32714616. Archived from the original on 2019-04-01. Retrieved 2018-11-07.
  36. McDonald SD, Han Z, Mulla S, Beyene J (2010). "Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses". BMJ. 341: c3428. doi:10.1136/bmj.c3428. PMC   2907482 . PMID   20647282.
  37. Poobalan AS, Aucott LS, Gurung T, Smith WC, Bhattacharya S (January 2009). "Obesity as an independent risk factor for elective and emergency caesarean delivery in nulliparous women—systematic review and meta-analysis of cohort studies". Obesity Reviews. 10 (1): 28–35. doi:10.1111/j.1467-789X.2008.00537.x. PMID   19021871. S2CID   11750524.
  38. DeJoy; Bittner (2015). "Obesity stigma as a determinant of poor birth outcomes in women with high BMI: a conceptual framework". Maternal and Child Health Journal. 19 (4): 693–699. doi:10.1007/s10995-014-1577-x. PMID   25047786. S2CID   24804448.
  39. Stothard KJ, Tennant PW, Bell R, Rankin J (February 2009). "Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis". JAMA. 301 (6): 636–650. doi:10.1001/jama.2009.113. PMID   19211471.
  40. Pestana IA, Greenfield JM, Walsh M, Donatucci CF, Erdmann D (2009). "Management of 'Buried' Penis in Adulthood: An Overview". Plastic and Reconstructive Surgery. 124 (4): 1186–1195. doi:10.1097/PRS.0b013e3181b5a37f. PMID   19935302. S2CID   36775257.
  41. Patijn J, Mekhail N, Hayek S, Lataster A, van Kleef M, Van Zundert J (May–June 2011). "Meralgia Paresthetica". Pain Practice. 11 (3): 302–308. doi:10.1111/j.1533-2500.2011.00458.x. PMID   21435164. S2CID   31291517.
  42. 1 2 Chai NC, Scher AI, Moghekar A, Bond DS, Peterlin BL (February 2014). "Obesity and headache: part I—a systematic review of the epidemiology of obesity and headache". Headache. 54 (2): 219–234. doi:10.1111/head.12296. PMC   3971380 . PMID   24512574.
  43. Peterlin BL, Sacco S, Bernecker C, Scher AI (April 2016). "Adipokines and Migraine: A Systematic Review". Headache. 56 (4): 622–644. doi:10.1111/head.12788. PMC   4836978 . PMID   27012149.
  44. Shiri R, Pourmemari MH, Falah-Hassani K, Viikari-Juntura E (December 2015). "The effect of excess body mass on the risk of carpal tunnel syndrome: a meta-analysis of 58 studies". Obesity Reviews. 16 (12): 1094–1104. doi:10.1111/obr.12324. PMID   26395787. S2CID   11156913.
  45. Beydoun MA, Beydoun HA, Wang Y (May 2008). "Obesity and central obesity as risk factors for incident dementia and its subtypes: A systematic review and meta-analysis". Obesity Reviews. 9 (3): 204–218. doi:10.1111/j.1467-789X.2008.00473.x. PMC   4887143 . PMID   18331422.
  46. Wall M (March 2008). "Idiopathic intracranial hypertension (pseudotumor cerebri)". Current Neurology and Neuroscience Reports. 8 (2): 87–93. doi:10.1007/s11910-008-0015-0. PMID   18460275. S2CID   17285706.
  47. Julayanont P, Karukote A, Ruthirago D, Panikkath D, Panikkath R (19 February 2016). "Idiopathic intracranial hypertension: ongoing clinical challenges and future prospects". Journal of Pain Research. 9: 87–99. doi: 10.2147/JPR.S60633 . PMC   4767055 . PMID   26929666.
  48. 1 2 Munger KL, Chitnis T, Ascherio A (2009). "Body size and risk of MS in two cohorts of US women". Neurology. 73 (19): 1543–1550. doi:10.1212/WNL.0b013e3181c0d6e0. PMC   2777074 . PMID   19901245.
  49. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D (2016). "Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study". BMJ. 335 (7630): 1134. doi:10.1136/bmj.39367.495995.AE. PMC   2099519 . PMID   17986716.
  50. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (April 2003). "Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults". New England Journal of Medicine. 348 (17): 1625–1638. doi: 10.1056/NEJMoa021423 . PMID   12711737. S2CID   22714795.
  51. Lyford, Joanna (August 2014). "Rising obesity levels in UK could result in 4,000 extra cancer cases each year". The Pharmaceutical Journal. Archived from the original on 2017-09-05. Retrieved 2014-08-17.
  52. STARSurg Collaborative (2016). "Multicentre prospective cohort study of body mass index and postoperative complications following gastrointestinal surgery". British Journal of Surgery. 103 (9): 1157–1172. doi:10.1002/bjs.10203. PMC   4973675 . PMID   27321766.
  53. 1 2 Mukamal KJ, Rimm EB, Kawachi I, O'Reilly EJ, Calle EE, Miller M (November 2009). "Body Mass Index and Risk of Suicide Among One Million US Adults". Epidemiology. 21 (1): 82–86. doi: 10.1097/EDE.0b013e3181c1fa2d . PMID   19907331. S2CID   10646644.
  54. 1 2 3 4 Dixon JB, Dixon ME, O'Brien PE (September 2003). "Depression in association with severe obesity: changes with weight loss". Archives of Internal Medicine. 163 (17): 2058–2065. doi:10.1001/archinte.163.17.2058. PMID   14504119.
  55. Tindle; Omalu; Courcoulas; Marcus; Hammers; Kuller (2010). "Risk of suicide after long-term follow-up from bariatric surgery". The American Journal of Medicine. 123 (11): 1036–1042. doi:10.1016/j.amjmed.2010.06.016. PMC   4296730 . PMID   20843498.
  56. Sikorski, Claudia; Luppa, Melanie; Kaiser, Marie; Glaesmer, Heide; Schomerus, Georg; König, Hans-Helmut; Riedel-Heller, Steffi G (2011-08-23). "The stigma of obesity in the general public and its implications for public health – a systematic review". BMC Public Health. 11: 661. doi: 10.1186/1471-2458-11-661 . ISSN   1471-2458. PMC   3175190 . PMID   21859493.
  57. "Dicke sind faul und dumm" [Fat people are lazy and stupid]. Süddeutsche Zeitung (in German). August 11, 2008. Archived from the original on June 13, 2018. Retrieved March 8, 2011.
  58. 1 2 Poulain M, Doucet M, Major GC, et al. (April 2006). "The effect of obesity on chronic respiratory diseases: pathophysiology and therapeutic strategies". CMAJ. 174 (9): 1293–1299. doi:10.1503/cmaj.051299. PMC   1435949 . PMID   16636330.
  59. Olson, Amy L.; Zwillich, Clifford (2005-09-01). "The obesity hypoventilation syndrome". The American Journal of Medicine. 118 (9): 948–956. doi: 10.1016/j.amjmed.2005.03.042 . ISSN   0002-9343. PMID   16164877. S2CID   37801868.  via ScienceDirect  (Subscription may be required or content may be available in libraries.)
  60. Sutherland ER (August 2008). "Obesity and asthma". Immunology and Allergy Clinics of North America. 28 (3): 589–602, ix. doi:10.1016/j.iac.2008.03.003. PMC   2504765 . PMID   18572109.
  61. Hodgson LE, Murphy PB, Hart N (May 2015). "Respiratory management of the obese patient undergoing surgery". Journal of Thoracic Disease . 7 (5): 943–952. doi:10.3978/j.issn.2072-1439.2015.03.08. PMC   4454851 . PMID   26101653.
  62. Peters, Michael C.; McGrath, Kelly Wong; Hawkins, Gregory A.; Hastie, Annette T.; Levy, Bruce D.; Israel, Elliot; et al. (July 2016). "Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts". The Lancet Respiratory Medicine. 4 (7): 574–584. doi:10.1016/S2213-2600(16)30048-0. PMC   5007068 . PMID   27283230.
  63. Gao, Min; Piernas, Carmen; Astbury, Nerys M.; Hippisley-Cox, Julia; O'Rahilly, Stephen; Aveyard, Paul; Jebb, Susan A. (1 June 2021). "Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study". The Lancet Diabetes & Endocrinology. 9 (6): 350–359. doi:10.1016/S2213-8587(21)00089-9. ISSN   2213-8587. PMC   8081400 . PMID   33932335.
  64. Vera-Zertuche, J. M.; Mancilla-Galindo, J.; Tlalpa-Prisco, M.; Aguilar-Alonso, P.; Aguirre-García, M. M.; Segura-Badilla, O.; Lazcano-Hernández, M.; Rocha-González, H. I.; Navarro-Cruz, A. R.; Kammar-García, A.; Vidal-Mayo, J. de J. (2021). "Obesity is a strong risk factor for short-term mortality and adverse outcomes in Mexican patients with COVID-19: a national observational study". Epidemiology & Infection. 149: e109. doi:10.1017/S0950268821001023. PMC   8134888 . PMID   33913410. S2CID   233446019.
  65. Kass, David A.; Duggal, Priya; Cingolani, Oscar (16 May 2020). "Obesity could shift severe COVID-19 disease to younger ages". The Lancet. 395 (10236): 1544–1545. doi:10.1016/S0140-6736(20)31024-2. PMC   7196905 . PMID   32380044.
  66. Choi HK, Atkinson K, Karlson EW, Curhan G (April 2005). "Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study". Archives of Internal Medicine. 165 (7): 742–748. doi:10.1001/archinte.165.7.742. PMID   15824292. S2CID   12201127.
  67. Tukker A, Visscher T, Picavet H (April 2008). "Overweight and health problems of the lower extremities: osteoarthritis, pain and disability". Public Health Nutrition. 12 (3): 359–368. doi: 10.1017/S1368980008002103 . PMID   18426630.
  68. Yu SP, Hunter DJ (August 2015). "Managing osteoarthritis". Australian Prescriber . 38 (4): 115–119. doi:10.18773/austprescr.2015.039. PMC   4653978 . PMID   26648637.
  69. Molenaar EA, Numans ME, van Ameijden EJ, Grobbee DE (November 2008). "Aanzienlijke comorbiditeit bij volwassenen met overgewicht: resultaten uit het 'Leidsche Rijn Gezondheidsproject'" [Considerable comorbidity in overweight adults: results from the Utrecht Health Project]. Nederlands Tijdschrift voor Geneeskunde (in Dutch). 152 (45): 2457–63. PMID   19051798.
  70. 1 2 Johansson, Helena; Kanis, John A.; Odén, Anders; McCloskey, Eugene; Chapurlat, Roland D.; Christiansen, Claus; et al. (January 2014). "A Meta-Analysis of the Association of Fracture Risk and Body Mass Index in Women". Journal of Bone and Mineral Research. 29 (1): 223–233. doi: 10.1002/jbmr.2017 . PMID   23775829. S2CID   44761194.
  71. Hunskaar S (2008). "A systematic review of overweight and obesity as risk factors and targets for clinical intervention for urinary incontinence in women". Neurourology and Urodynamics. 27 (8): 749–757. doi: 10.1002/nau.20635 . PMID   18951445. S2CID   20378183.
  72. Bart S, Ciangura C, Thibault F, et al. (September 2008). "Incontinence urinaire d'effort et obésité" [Stress urinary incontinence and obesity]. Progrès en Urologie (in French). 18 (8): 493–498. doi:10.1016/j.purol.2008.04.015. PMID   18760738.
  73. Subak LL, Wing R, West DS, et al. (January 2009). "Weight loss to treat urinary incontinence in overweight and obese women". New England Journal of Medicine. 360 (5): 481–490. doi:10.1056/NEJMoa0806375. PMC   2877497 . PMID   19179316.
  74. Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O (2006). "Obesity and risk for chronic renal failure". Journal of the American Society of Nephrology. 17 (6): 1695–1702. doi: 10.1681/ASN.2005060638 . PMID   16641153.
  75. Corona G, Bianchini S, Sforza A, Vignozzi L, Maggi M (October 2015). "Hypogonadism as a possible link between metabolic diseases and erectile dysfunction in aging men". Hormones – International Journal of Endocrinology and Metabolism. 14 (4): 569–578. doi: 10.14310/horm.2002.1635 . hdl: 2158/1090319 . PMID   26732155.
  76. Corona, Giovanni; Rastrelli, Giulia; Filippi, Sandra; Vignozzi, Linda; Mannucci, Edoardo; Maggi, Mario (2014-01-01). "Erectile dysfunction and central obesity: an Italian perspective". Asian Journal of Andrology. 16 (4): 581–591. doi: 10.4103/1008-682X.126386 . ISSN   1008-682X. PMC   4104087 . PMID   24713832.
  77. Chitaley, Kanchan; Kupelian, Varant; Subak, Leslee; Wessells, Hunter (2009-12-01). "Diabetes, Obesity and Erectile Dysfunction: Field Overview and Research Priorities". The Journal of Urology. 182 (6 Suppl): S45–S50. doi:10.1016/j.juro.2009.07.089. ISSN   0022-5347. PMC   2864637 . PMID   19846136.

Further reading