Perkin triangle

Last updated
Perkin triangle
Perkin triangle distillation apparatus.svg
A Perkin triangle distillation setup
  1. Stirrer bar/anti-bumping granules
  2. Still pot
  3. Fractionating column, preferably vacuum-jacket insulated
  4. Thermometer
  5. Teflon tap 1, distillate-collecting tap
  6. Cold finger
  7. Cooling-water outflow
  8. Cooling-water inflow
  9. Teflon tap 2, still isolation tap
  10. Vacuum/gas inlet
  11. Teflon tap 3, distillate-isolation tap
  12. Still receiver
Uses Distillation
Inventor William Henry Perkin
Related items Vacuum distillation

A Perkin triangle is a specialized apparatus for the distillation of air-sensitive materials. It is named after William Henry Perkin Jr., whose design was approximately triangular.[ citation needed ] The diagram shows a more modern version, in which the glass taps have been replaced with more air-tight Teflon taps.

Contents

Some compounds have high boiling points and are sensitive to air. A simple vacuum distillation system can be used, whereby the vacuum is replaced with an inert gas after the distillation is complete. However, this is a less satisfactory system if one desires to collect fractions under a reduced pressure. To do this, a "pig" adapter can be added to the end of the condenser, or for better results or for very air-sensitive compounds, a Perkin triangle apparatus can be used.

The Perkin triangle uses a series of glass or Teflon taps to allow fractions to be isolated from the rest of the still, without the main body of the distillation being removed from either the vacuum or heat source, so that the reflux may continue. To do this, the sample is first isolated from the vacuum through the taps. The vacuum over the sample is then replaced with an inert gas such as nitrogen or argon. The collection vessel or still receiver can then be removed and stoppered. Finally, a fresh collection vessel can be added to the system, evacuated, and linked back to the distillation system through the taps to collect the next fraction. The process is repeated until all fractions have been collected.

Solvent drying

A Perkin triangle is also a convenient device for drying solvents. The solvent can be allowed to reflux over a drying agent housed in the still pot (shown as 2 in the figure) for a suitable time to dry solvent. The collecting tap (shown as 5 in the figure) can then be opened to collect the solvent in a Schlenk flask for storage. Depending on the boiling point of the solvent, a vacuum can be applied.

Reference textbook


Related Research Articles

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to fractionate. Generally the component parts have boiling points that differ by less than 25 °C (45 °F) from each other under a pressure of one atmosphere. If the difference in boiling points is greater than 25 °C, a simple distillation is typically used.

<span class="mw-page-title-main">Fractionating column</span> Equipment to separate liquids by distillation

A fractionating column or fractional column is equipment used in the distillation of liquid mixtures to separate the mixture into its component parts, or fractions, based on their differences in volatility. Fractionating columns are used in small-scale laboratory distillations as well as large-scale industrial distillations.

<span class="mw-page-title-main">Still</span> Apparatus used to distill liquid mixtures

A still is an apparatus used to distill liquid mixtures by heating to selectively boil and then cooling to condense the vapor. A still uses the same concepts as a basic distillation apparatus, but on a much larger scale. Stills have been used to produce perfume and medicine, water for injection (WFI) for pharmaceutical use, generally to separate and purify different chemicals, and to produce distilled beverages containing ethanol.

<span class="mw-page-title-main">Vacuum distillation</span> Low-pressure and low-temperature distillation method

Vacuum distillation or distillation under reduced pressure is a type of distillation performed under reduced pressure, which allows the purification of compounds not readily distilled at ambient pressures or simply to save time or energy. This technique separates compounds based on differences in their boiling points. This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation.

<span class="mw-page-title-main">Rotary evaporator</span> Device used in chemical laboratories

A rotary evaporator (rotavap) is a device used in chemical laboratories for the efficient and gentle removal of solvents from samples by evaporation. When referenced in the chemistry research literature, description of the use of this technique and equipment may include the phrase "rotary evaporator", though use is often rather signaled by other language.

<span class="mw-page-title-main">Soxhlet extractor</span> Laboratory apparatus

A Soxhlet extractor is a piece of laboratory apparatus invented in 1879 by Franz von Soxhlet. It was originally designed for the extraction of a lipid from a solid material. Typically, Soxhlet extraction is used when the desired compound has a limited solubility in a solvent, and the impurity is insoluble in that solvent. It allows for unmonitored and unmanaged operation while efficiently recycling a small amount of solvent to dissolve a larger amount of material.

<span class="mw-page-title-main">Continuous distillation</span> Form of distillation

Continuous distillation, a form of distillation, is an ongoing separation in which a mixture is continuously fed into the process and separated fractions are removed continuously as output streams. Distillation is the separation or partial separation of a liquid feed mixture into components or fractions by selective boiling and condensation. The process produces at least two output fractions. These fractions include at least one volatile distillate fraction, which has boiled and been separately captured as a vapor condensed to a liquid, and practically always a bottoms fraction, which is the least volatile residue that has not been separately captured as a condensed vapor.

The Marcusson apparatus, Dean-Stark apparatus, Dean–Stark receiver, distilling trap, or Dean–Stark Head is a piece of laboratory glassware used in synthetic chemistry to collect water from a reactor. It is used in combination with a reflux condenser and a distillation flask for the separation of water from liquids. This may be a continuous removal of the water that is produced during a chemical reaction performed at reflux temperature, such as in esterification reactions. The original setup by Julius Marcusson was refined by the American chemists Ernest Woodward Dean (1888–1959) and David Dewey Stark (1893–1979) in 1920 for determination of the water content in petroleum.

<span class="mw-page-title-main">Round-bottom flask</span> Laboratory equipment

Round-bottom flasks are types of flasks having spherical bottoms used as laboratory glassware, mostly for chemical or biochemical work. They are typically made of glass for chemical inertness; and in modern days, they are usually made of heat-resistant borosilicate glass. There is at least one tubular section known as the neck with an opening at the tip. Two- or three-necked flasks are common as well. Round bottom flasks come in many sizes, from 5 mL to 20 L, with the sizes usually inscribed on the glass. In pilot plants even larger flasks are encountered.

<span class="mw-page-title-main">Schlenk line</span> Glass apparatus used in chemistry

The Schlenk line is a commonly used chemistry apparatus developed by Wilhelm Schlenk. It consists of a dual manifold with several ports. One manifold is connected to a source of purified inert gas, while the other is connected to a vacuum pump. The inert-gas line is vented through an oil bubbler, while solvent vapors and gaseous reaction products are prevented from contaminating the vacuum pump by a liquid-nitrogen or dry-ice/acetone cold trap. Special stopcocks or Teflon taps allow vacuum or inert gas to be selected without the need for placing the sample on a separate line.

<span class="mw-page-title-main">Schlenk flask</span> Reaction vessel used in air-sensitive chemistry

A Schlenk flask, or Schlenk tube, is a reaction vessel typically used in air-sensitive chemistry, invented by Wilhelm Schlenk. It has a side arm fitted with a PTFE or ground glass stopcock, which allows the vessel to be evacuated or filled with gases. These flasks are often connected to Schlenk lines, which allow both operations to be done easily.

<span class="mw-page-title-main">Kugelrohr</span> Vacuum distillation apparatus

A Kugelrohr is a short-path vacuum distillation apparatus typically used to distill relatively small amounts of compounds with high boiling points under greatly reduced pressure.

<span class="mw-page-title-main">Gas bubbler</span> Laboratory equipment used to remove air

A gas bubbler is a piece of laboratory glassware which consists of a glass bulb filled with a small amount of fluid—usually mineral or silicone oil, less commonly mercury. The inlet to the bulb is connected to a ground glass joint, while the outlet is vented to the air.

<span class="mw-page-title-main">NMR tube</span> Laboratory glassware

An NMR tube is a thin glass walled tube used to contain samples in nuclear magnetic resonance spectroscopy. Typically NMR tubes come in 5 mm diameters but 10 mm and 3 mm samples are known. It is important that the tubes are uniformly thick and well-balanced to ensure that NMR tube spins at a regular rate, usually about 20 Hz in the NMR spectrometer.

<span class="mw-page-title-main">Condenser (laboratory)</span> Laboratory apparatus used to condense vapors

In chemistry, a condenser is laboratory apparatus used to condense vapors – that is, turn them into liquids – by cooling them down.

Air-free techniques refer to a range of manipulations in the chemistry laboratory for the handling of compounds that are air-sensitive. These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (100–10−3 Torr) or high (10−3–10−6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.

<span class="mw-page-title-main">Cannula transfer</span>

Cannula transfer or cannulation is a set of air-free techniques used with a Schlenk line, in transferring liquid or solution samples between reaction vessels via cannulae, avoiding atmospheric contamination. While the syringes are not the same as cannulae, the techniques remain relevant.

<span class="mw-page-title-main">Reflux</span> Condensation of vapors and their return to where they originated

Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial and laboratory distillations. It is also used in chemistry to supply energy to reactions over a long period of time.

<span class="mw-page-title-main">Short-path distillation</span>

Short-path distillation is a distillation technique that involves the distillate traveling a short distance, often only a few centimeters, and is normally done at reduced pressure. Short-path distillation systems often have a variety of names depending on the manufacturer of the system and what compounds are being distilled within them. A classic example would be a distillation involving the distillate traveling from one glass bulb to another, without the need for a condenser separating the two chambers. This technique is often used for compounds which are unstable at high temperatures or to purify small amounts of compound. The advantage is that the heating temperature can be considerably lower at reduced pressure than the boiling point of the liquid at standard pressure, and the distillate only has to travel a short distance before condensing. A short path ensures that little compound is lost on the sides of the apparatus. The Kugelrohr is a kind of a short path distillation apparatus which can contain multiple chambers to collect distillate fractions. To increase the evaporation rate without increasing temperature there are several modern techniques that increase the surface area of the liquid such as thin film, wiped film or 'wiper' film, and rolled film all of which involve mechanically spreading a film of the liquid over a large surface.