Plant density

Last updated

Plant density is the number of individual plants present per unit of ground area. It is most easily interpreted in the case of monospecific stands, where all plants belong to the same species and have germinated at the same time. However, it could also indicate the number of individual plants found at a given location.

Contents

Definition and concepts

Plant density is defined as the number of plants present per unit area of ground. In nature, plant densities can be especially high when seeds present in a seed bank germinate after winter, or in a forest understory after a tree fall opens a gap in the canopy. Due to competition for light, nutrients and water, individual plants will not be able to take up all resources that are required for optimal growth. This indicates that plant density not only depends on the space available to grow but it is also determined by the amount of resources available. Especially in the case of light, smaller plants will take up fewer resources than bigger plants, even less than would be expected on the basis of their size differences. [1] As plant density increases it will affect the structure of the plant as well as the developmental patterns of the plant. [2] This is called 'asymmetric competition'  and will cause some subordinate plants to die off, in a process that has been named 'self-thinning'. The remaining plants perform better as fewer plants will now compete for resources. A key factor in agronomy and forestry is plant population density, which provides an experimental approach for better understanding plant-plant competition. [3]

Monostands

Effect of plant density on (a) total shoot mass and (b) seed mass per unit ground area. Schematised figure, inspired a.o. by experiments with maize by Li et al. (2015). Fig-Relation Biomass-vs-Density.jpg
Effect of plant density on (a) total shoot mass and (b) seed mass per unit ground area. Schematised figure, inspired a.o. by experiments with maize by Li et al. (2015).

Many of the processes related to plant density can well be studied in monocultures of even-aged individuals that are sown or planted at the same time. These can be referred to as 'monostands' and are often studied in the context of agricultural, horticultural or silvicultural questions. However, they are also highly relevant in ecology. [4] In general, the total above-ground biomass of a monostand increases with increasing density, up to the point where the biomass saturates. This is what has been dubbed 'constant final yield', [5] and refers to the total plant biomass per unit ground area. Seed production per ground area is not constant, but often declines with density after total biomass per ground area reached its maximum value. [6]

Plant density and self-thinning

Effect of a low (L), intermediate (I) and high (H) plant density on Maize. DensityEffectsonMaize.jpg
Effect of a low (L), intermediate (I) and high (H) plant density on Maize.

Experiments with herbaceous plants have been carried out with extremely high densities (up to 80,000 plants per square meter). At such high densities, these plants will start to compete soon after germination, and eventually a large number of those individuals (up to 95%) will die. In agriculture, farmers avoid these very high densities as they do not contribute to seed yield. Normal densities in modern agriculture depend on final plant size and vary between 5-10 plants per square meter for Maize till 200-300 plants per square meter for Rice or Barley. In forestry, normal densities are less than 0.1 plants per square meter. Not only the biomass per square meter increases with density, but also the Leaf Area Index (LAI, leaf area per ground area). The higher the Leaf Area Index, the higher the fraction of intercepted sunlight will be, but the gain in light interception and photosynthesis will not match the increase in LAI, and this is the reason that total biomass per ground area saturates at high plant densities.

The individual plant in a monostand

Biomass

Contrary to the total biomass per unit ground area, which increases with density until reaching saturation, the average biomass of individual plants in a monostand strongly declines with plant density, such that for every doubling in density individual plants will become ~30-40% smaller. [7] Plants in higher density stands invest relatively more of their biomass in stems (higher Stem Mass Fraction), and less in leaves and roots.

Apart from their weight, plants will change their phenotype in many other ways and at different integration levels: [7]

Leaves

Leaf size of the largest full-grown leaf of Maize plants grown at a low (L), intermediate (I), and high (H) plant density. Density-Maize-P3.jpg
Leaf size of the largest full-grown leaf of Maize plants grown at a low (L), intermediate (I), and high (H) plant density.

Individual plants in dense stands have fewer leaves and they are often smaller and more narrow (see photo). Leaves of high-density plants are thinner (higher SLA – leaf area per unit mass), especially lower in the vegetation, with a similar concentration of nitrogen per unit mass, but a lower nitrogen content per area.

Stems

Average plant height or vegetation height often remains remarkably similar, but a very consistent difference is that the stems of high-density plants have a much smaller diameter. They also have fewer side shoots (tillers) in the case of grasses, or branches in the case of herbs and trees.

Roots

Root growth in environments with high plant density show that there will be fewer roots per plant and but the length and general density of the individual root remain somewhat the same, this is expected to still cause issues for the plant in future growth.

Physiology

In dense stands, there is a strong gradient of light from top to bottom. Lower leaves in high-density stands will therefore have a lower photosynthetic rate and a lower transpiration rate than similar leaves of plants in open stands. There are indications that also the well-illuminated top leaves may have a lower photosynthetic capacity in densely-grown plants.

Seed production

Because densely-grown plants are smaller, they will also produce fewer seeds per individual. But also the seed production as a fraction of total plant biomass (harvest index) is lower, and so is the seed weight of an individual seed.

See also

Related Research Articles

<span class="mw-page-title-main">Evergreen</span> Plant that has leaves in all seasons

In botany, an evergreen is a plant which has foliage that remains green and functional through more than one growing season. This contrasts with deciduous plants, which completely lose their foliage during the winter or dry season.

<i>Bromus tectorum</i> Species of grass

Bromus tectorum, known as downy brome, drooping brome or cheatgrass, is a winter annual grass native to Europe, southwestern Asia, and northern Africa, but has become invasive in many other areas. It now is present in most of Europe, southern Russia, Japan, South Africa, Australia, New Zealand, Iceland, Greenland, North America and western Central Asia. In the eastern US B. tectorum is common along roadsides and as a crop weed, but usually does not dominate an ecosystem. It has become a dominant species in the Intermountain West and parts of Canada, and displays especially invasive behavior in the sagebrush steppe ecosystems where it has been listed as noxious weed. B. tectorum often enters the site in an area that has been disturbed, and then quickly expands into the surrounding area through its rapid growth and prolific seed production.

Silviculture is the practice of controlling the growth, composition/structure, as well as quality of forests to meet values and needs, specifically timber production.

<i>Cupressus pygmaea</i> Species of conifer

Cupressus pygmaea, the Mendocino cypress or pygmy cypress, is a taxon of disputed status in the genus Cupressus endemic to certain coastal terraces and coastal mountain ranges of Mendocino and Sonoma Counties in northwestern California. It is a variable tree, and closely related to Cupressus abramsiana and Cupressus goveniana, enough to sometimes be considered conspecific with them.

Theoretical production ecology tries to quantitatively study the growth of crops. The plant is treated as a kind of biological factory, which processes light, carbon dioxide, water, and nutrients into harvestable parts. Main parameters kept into consideration are temperature, sunlight, standing crop biomass, plant production distribution, nutrient and water supply.

<i>Arundo donax</i> Species of plant

Arundo donax is a tall perennial cane. It is one of several so-called reed species. It has several common names including giant cane, elephant grass, carrizo, arundo, Spanish cane, Colorado river reed, wild cane, and giant reed. Arundo and donax are respectively the old Latin and Greek names for reed.

<i>Spergula arvensis</i> Species of flowering plant

Spergula arvensis, the corn spurry, stickwort, starwort or spurrey, is a species of plant in the genus Spergula.

<i>Thlaspi arvense</i> Species of flowering plant in the cabbage family Brassicaceae

Thlaspi arvense, known by the common name field pennycress, is a flowering plant in the cabbage family Brassicaceae. It is native to Eurasia, and is a common weed throughout much of North America and its home.

<i>Miscanthus × giganteus</i> Species of grass

Miscanthus × giganteus, also known as the giant miscanthus, is a sterile hybrid of Miscanthus sinensis and Miscanthus sacchariflorus. It is a perennial grass with bamboo-like stems that can grow to heights of 3–4 metres (13 ft) in one season. Just like Pennisetum purpureum, Arundo donax and Saccharum ravennae, it is also called elephant grass.

Specific leaf area (SLA) is the ratio of leaf area to leaf dry mass. The inverse of SLA is Leaf Mass per Area (LMA).

<i>Simarouba amara</i> Species of tree in the family Simaroubaceae

Simarouba amara is a species of tree in the family Simaroubaceae, found in the rainforests and savannahs of South and Central America and the Caribbean. It was first described by Aubl. in French Guiana in 1775 and is one of six species of Simarouba. The tree is evergreen, but produces a new set of leaves once a year. It requires relatively high levels of light to grow and grows rapidly in these conditions, but lives for a relatively short time. In Panama, it flowers during the dry season in February and March, whereas in Costa Rica, where there is no dry season it flowers later, between March and July. As the species is dioecious, the trees are either male or female and only produce male or female flowers. The small yellow flowers are thought to be pollinated by insects, the resulting fruits are dispersed by animals including monkeys, birds and fruit-eating bats and the seeds are also dispersed by leaf cutter ants.

<i>Psathyrostachys juncea</i> Species of grass

Psathyrostachys juncea is a species of grass known by the common name Russian wildrye. It was formerly classified as Elymus junceus. It is native to Russia and China, and has been introduced to other parts of the world, such as Canada and the United States. Psathyrostachys juncea is a great source of food for grazing animals, as it has high nutrition value in its dense basal leaves, even in the late summer and autumn seasons. This species can grow and prosper in many harsh environments, making it an ideal candidate for improvement as it can grow in areas were farming is difficult. This species is a drought-resistant forage plant and can survive during the cool seasons. It is also a cross-pollinator and is self-sterile. This means that P. juncea cannot self-fertilize; it must find another plant of the same species with which to exchange gametes. Self-sterilization increases the genetic diversity of a species.

Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.

Zostera novazelandica Setchell is a species of seagrass in the family Zosteraceae found on the shores of New Zealand. It is regarded as a distinct species by some authors but considered as a synonym of Zostera muelleri Irmisch ex Ascherson by others. The Maori names for Zostera novazelandica are karepō, nana, rehia, and rimurehia.

Daily light integral (DLI) describes the number of photosynthetically active photons that are delivered to a specific area over a 24-hour period. This variable is particularly useful to describe the light environment of plants.

<i>Pherosphaera hookeriana</i> Species of conifer

Pherosphaera hookeriana, or Mount Mawson pine, is a dwarf conifer endemic to Tasmania, at altitudes above 600 meters. There are roughly 30 known sites, with population numbers in the tens of thousands. The species occurs in a range of habitats typically in areas near water bodies, mostly on dolerite derived soils. The species is highly fire sensitive and an increase in fire events associated with climate change may lead to local extinction and fragmentation of habitat.

The photothermal ratio (PTR), also named photothermal quotient, is a variable that characterizes the amount of light available to plants relative to the temperature level. It is used in plant biology to characterize the growth environment of plants.

Construction costs is a concept in biology that conveys how much glucose is required to construct a unit of plant biomass, given the biosynthetic pathways and starting from glucose and mineral constituents. It includes the sugars required to provide the carbon skeletons for the formation of e.g. lipids, lignin and proteins, but also the glucose required to produce energy (ATP) and reducing power to drive the metabolic pathways.

Biomass allocation is a concept in plant biology which indicates the relative proportion of plant biomass present in the different organs of a plant. It can also be used for whole plant communities.

Plant growth analysis refers to a set of concepts and equations by which changes in size of plants over time can be summarised and dissected in component variables. It is often applied in the analysis of growth of individual plants, but can also be used in a situation where crop growth is followed over time.

References

  1. Mustajärvi, Kaisa; Siikamäki, Pirkko; Rytkönen, Saara; Lammi, Antti (2001). "Consequences of plant population size and density for plant-pollinator interactions and plant performance: Plant-pollinator interactions". Journal of Ecology. 89 (1): 80–87. doi: 10.1046/j.1365-2745.2001.00521.x .
  2. Dhaliwal DS, Williams MM (2020-02-07). "Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn". PLOS ONE. 15 (2): e0228809. Bibcode:2020PLoSO..1528809D. doi: 10.1371/journal.pone.0228809 . PMC   7006923 . PMID   32032371.
  3. Postma, Johannes A.; Hecht, Vera L.; Hikosaka, Kouki; Nord, Eric A.; Pons, Thijs L.; Poorter, Hendrik (2021). "Dividing the pie: A quantitative review on plant density responses". Plant, Cell & Environment. 44 (4): 1072–1094. doi: 10.1111/pce.13968 . ISSN   0140-7791. PMID   33280135. S2CID   227523495.
  4. Harper JL (1977). Population biology of plants. London: Academic Press.
  5. Weiner J, Freckleton RP (2010). "Constant final yield". Annual Review of Ecology, Evolution, and Systematics. 41: 173–192. doi:10.1146/annurev-ecolsys-102209-144642.
  6. Li J, Xie RZ, Wang KR, Ming B, Guo YQ, Zhang GQ, Li SK (2015). "Variations in Maize dry matter, harvest index, and grain yield with plant density". Agronomy Journal. 107 (3): 829–834. doi:10.2134/agronj14.0522.
  7. 1 2 Postma JA, Hecht VL, Hikosaka K, Nord EA, Pons TL, Poorter H (December 2020). "Dividing the pie: A quantitative review on plant density responses". Plant, Cell & Environment. 44 (4): 1072–1094. doi: 10.1111/pce.13968 . PMID   33280135.