This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Tracking in hunting and ecology is the science and art of observing animal tracks and other signs, with the goal of gaining understanding of the landscape and the animal being tracked (the "quarry"). A further goal of tracking is the deeper understanding of the systems and patterns that make up the environment surrounding and incorporating the tracker.
The practice of tracking may focus on, but is not limited to, the patterns and systems of the local animal life and ecology. Trackers must be able to recognize and follow animals through their tracks, signs, and trails, also known as spoor. Spoor may include tracks, scat, feathers, kills, scratching posts, trails, drag marks, sounds, scents, marking posts, feeding signs, the behavior of other animals, habitat cues, and any other clues about the identity and whereabouts of the quarry.
The skilled tracker is able to discern these clues, recreate what transpired on the landscape, and make predictions about the quarry. The tracker may attempt to predict the current location of the quarry and follow the quarry's spoor to that location, in an activity known as trailing.
Prehistoric hunters used tracking principally to gather food. Even in historic times, tracking has been traditionally practiced by the majority of tribal people all across the world. The military and intelligence agencies also use tracking to find enemy combatants in the bush, land, sea, and desert. [1]
It has been suggested that the art of tracking may have been the first implementation of science, practiced by hunter-gatherers since the evolution of modern humans. [2] [3] [4] [5] [6]
Apart from knowledge based on direct observations of animals, trackers gain a detailed understanding of animal behavior through the interpretation of tracks and signs. In this way much information can be obtained that would otherwise remain unknown, especially on the behavior of rare or nocturnal animals that are not often seen.
Tracks and signs offer information on undisturbed, natural behavior, while direct observations often influence the animal by the mere presence of the observer. Tracking is therefore a non-invasive method of information gathering, in which potential stress caused to animals can be minimized.
Some of the most important applications of tracking are in hunting and trapping, as well as controlling poaching, ecotourism, environmental education, police investigation, search and rescue, and in scientific research.
The modern science of animal tracking is widely practiced in the fields of wildlife biology, zoology, mammalogy, conservation, and wildlife management. Tracking enables the detection of rare, endangered, and elusive species. The science of tracking is utilized in the study of forest carnivores like the Canada lynx (Felis lynx) and the wolverine (Gulo gulo). Various measurements of tracks, and/or an animal's paws, and subsequent analyses of the datum, can also reveal important information about animals' physiology and their behavior. For example, measurements of lynx paws demonstrate their support capacity (on snow) to be double that of bobcat. [7]
In order to recognize a specific sign, a tracker often has a preconceived image of what a typical sign looks like. Without preconceived images many signs may be overlooked. However, with a preconceived image of a specific animal's spoor in mind, trackers will tend to 'recognize' spoor in markings made by another animal, or even in random markings. [2] Their mind will be prejudiced to see what they want to see, and in order to avoid making such errors they must be careful not to reach decisions too soon. Decisions made at a glance can often be erroneous, so when encountering new signs, trackers take their time to study signs in detail. While preconceived images may help in recognizing signs, the tracker must, however, avoid the preconditioned tendency to look for one set of things in the environment to the exclusion of all others.[ citation needed ][ original research? ]
Trackers will always try to identify the trail positively by some distinguishing mark or mannerism in order not to lose it in any similar spoor. They will look for such features in the footprints as well as for an individual manner of walking. Often hoofs of antelope are broken or have chipped edges, or when the animal is walking it may leave a characteristic scuff mark. Experienced trackers will memorise a spoor and be able to distinguish that individual animal's spoor from others. When following a spoor, trackers will walk next to it, not on it, taking care not to spoil the trail so that it can easily be found again if the spoor is lost.[ citation needed ]
The shadows cast by ridges in the spoor show up best if the spoor is kept between the tracker and the sun. With the sun shining from behind the spoor, the shadows cast by small ridges and indentations in the spoor will be clearly visible. With the sun behind the tracker, however, these shadows will be hidden by the ridges that cast them. Tracking is easiest in the morning and late afternoon, as the shadows cast by the ridges in the spoor are longer and stand out better than at or near midday. As the sun moves higher in the sky, the shadows grow shorter. At midday the spoor may cast no shadows at all, making them difficult to see in the glare of the sunlight.[ citation needed ]
Trackers will never look down at their feet if they can help it, since this will slow them down. By looking up, well ahead of themselves, approximately five to ten meters (15–30 feet) depending on the terrain, they are able to track much faster and with more ease. Unless they need to study the spoor more closely, it is not necessary to examine every sign. If they see a sign ten meters ahead, those in between can be ignored while they look for spoor further on. Over difficult terrain it may not be possible to see signs well ahead, so trackers will have to look at the ground in front of them and move more slowly.
Trackers must also avoid concentrating all their attention on the tracks, thereby ignoring everything around them. Tracking requires varying attention, a constant refocusing between minute details of the track and the whole pattern of the environment.
Although in principle it is possible to follow a trail by simply looking for one sign after the other, this may prove so time-consuming that the tracker will never catch up with the quarry. Instead, trackers place themselves in the position of their quarry in order to anticipate the route it may have taken. [2] They will thereby be able to decide in advance where they can expect to find signs and thus not waste time looking for them.
Trackers will often look for spoor in obvious places such as openings between bushes, where the animal would most likely have moved. In thick bushes they will look for the most accessible thruways. Where the spoor crosses an open clearing, they will look in the general direction for access ways on the other side of the clearing. If the animal was moving from shade to shade, they will look for spoor in the shade ahead. If their quarry has consistently moved in a general direction, it may be possible to follow the most likely route by focusing on the terrain, and to look for signs of spoor only occasionally. They must, however, always be alert for an abrupt change in direction.
Animals usually make use of a network of paths to move from one locality to another. If it is clear that an animal was using a particular path, this can simply be followed up to the point where it forks, or to where the animal has left the path. Where one of several paths may have been used, trackers must of course determine which path that specific animal used. This may not always be easy, since many animals often use the same paths.
In areas of high animal densities that have much-used animal paths which interlink, it may seem impossible to follow tracks. However, once tracks have been located on an animal path, it is often possible for a tracker to follow the path even though no further tracks are seen. By looking to either side of the path, the tracker can establish if the animal has moved away from the path, and then follow the new trail.
In difficult terrain, where signs are sparse, trackers may have to rely extensively on anticipating the animal's movements. In order to move fast enough to overtake the animal, one may not be able to detect all the signs. Trackers sometimes identify themselves with the animal to such an extent that they follow an imaginary route which they think the animal would most likely have taken, only confirming their expectations with occasional signs. [2]
When trackers come to hard, stony ground, where tracks are virtually impossible to discern, apart from the odd small pebble that has been overturned, they may move around the patch of hard ground in order to find the spoor in softer ground.
When the trackers lose the spoor, they first search obvious places for signs, choosing several likely access ways through the bush in the general direction of movement. When several trackers work together, they can simply fan out and quarter the ground until one of them finds it. An experienced tracker may be able to predict more or less where the animal was going, and will not waste time in one spot looking for signs, but rather look for it further ahead. [2]
Knowledge of the terrain and animal behavior allows trackers to save valuable time by predicting the animal's movements. Once the general direction of movement is established and it is known that an animal path, river or any other natural boundary lies ahead, they can leave the spoor and move to these places, cutting across the trail by sweeping back and forth across the predicted direction in order to pick up tracks a considerable distance ahead. [2]
To be able to anticipate and predict the movements of an animal, trackers must know the animal and its environment so well that they can identify themselves with that animal. They must be able to visualize how the animal was moving around, and place themselves in its position. If the animal was moving in a straight line at a steady pace, and it is known that there is a waterhole or a pan further ahead, trackers should leave the spoor to look for signs of it at the waterhole or pan. While feeding, an animal will usually move into the wind, going from one bush to another. If the trackers know the animal's favored food, and know moreover how they generally move, they need not follow its zigzag path, but leave the spoor at places, moving in a straight course to save time, and pick up the spoor further on. [2]
Since signs may be fractional or partly obliterated, it may not always be possible to make a complete reconstruction of the animal's movements and activities on the basis of spoor evidence alone. Trackers may therefore have to create a working hypothesis in which spoor evidence is supplemented with hypothetical assumptions based not only on their knowledge of animal behavior, but also on their creative ability to solve new problems and discover new information. The working hypothesis is often a reconstruction of what the animal was doing, how fast it was moving, when it was there, where it was going to and where it might be at that time. Such a working hypothesis enables the trackers to predict the animal's movements. As new information is gathered, they may have to revise their working hypothesis, creating a better reconstruction of the animal's activities. Anticipating and predicting an animal's movements, therefore, involves a continuous process of problem-solving, creating new hypotheses and discovering new information. [2]
In order to come close to an animal, trackers must remain undetected not only by the animal, but also by other animals that may alert it. Moving as quietly as possible, trackers will avoid stepping on dry leaves and twigs, and take great care when moving through dry grass.
If the trackers are in close proximity to the animal, it is important that they remain downwind of it, that is, in a position where the wind is blowing away from the animal in the direction of the tracker. They must never be in a position where their scent could be carried in the wind towards the animal and thereby alert it. It is also important that the animal does not have the opportunity to cross their tracks, since the lingering human scent will alert it. Most animals prefer to keep the wind in their faces when traveling so that they can scent danger ahead of them. Trackers will therefore usually be downwind from them as they approach the animals from behind. The wind direction may, however, have changed. If the wind direction is unfavorable, the trackers may have to leave the spoor to search for their quarry from the downwind side. [2]
As the trackers get closer to the animal, they must make sure that they see it before it sees them. Some trackers maintain that an animal keeps looking back down its own trail, always on the alert for danger coming from behind. When the spoor is very fresh, trackers may have to leave the spoor so that the animal does not see them first. Animals usually rest facing downwind, so that they can see danger approaching from the downwind side, while they can smell danger coming from behind them. An animal may also double back on its spoor and circle downwind before settling down to rest. [2] A predator following its trail will move past the resting animal on the upwind side before realizing that the animal had doubled back, and the resting animal will smell the predator in time to make its escape.
When stalking an animal, trackers use the cover of bushes, going down on their hands and knees where necessary. In long grass they go down on their stomachs pulling themselves forward with their elbows. The most important thing is not to attract attention by sudden movements. Trackers take their time, moving slowly when the animal is not looking, and keeping still when the animal is looking in their direction. When stalking an animal, trackers must also be careful not to disturb other animals. A disturbed animal will give its alarm signal, thereby alerting all animals in the vicinity, including the animal being tracked down.
The Canada lynx or Canadian lynx is one of the four living species in the genus Lynx. It is a medium-sized wild cat characterized by long, dense fur, triangular ears with black tufts at the tips, and broad, snowshoe-like paws. Its hindlimbs are longer than the forelimbs, so its back slopes downward to the front. The Canada lynx stands 48–56 cm (19–22 in) tall at the shoulder and weighs between 5 and 17 kg. It is a good swimmer and an agile climber.
An airfield traffic pattern is a standard path followed by aircraft when taking off or landing while maintaining visual contact with the airfield.
Tracking may refer to:
In ethology, territory is the sociographical area that an animal consistently defends against conspecific competition using agonistic behaviors or real physical aggression. Animals that actively defend territories in this way are referred to as being territorial or displaying territorialism.
A track warrant is a set of instructions issued to a train crew authorizing specific train movements. The system is widely used in North America. The warrant is issued by the train dispatcher and delivered to the train crew via radio. The train crew copies the instructions onto a pre-printed paper form and reads back the warrant to ensure that nothing was misunderstood.
Eye tracking is the process of measuring either the point of gaze or the motion of an eye relative to the head. An eye tracker is a device for measuring eye positions and eye movement. Eye trackers are used in research on the visual system, in psychology, in psycholinguistics, marketing, as an input device for human-computer interaction, and in product design. In addition, eye trackers are increasingly being used for assistive and rehabilitative applications such as controlling wheelchairs, robotic arms, and prostheses. Recently, eye tracking has been examined as a tool for the early detection of autism spectrum disorder. There are several methods for measuring eye movement, with the most popular variant using video images to extract eye position. Other methods use search coils or are based on the electrooculogram.
Tracking refers to a dog's ability to detect, recognize and follow a specific scent. Possessing heightened olfactory abilities, dogs, especially scent hounds, are able to detect, track and locate the source of certain odours. A deeper understanding of the physiological mechanisms and the phases involved in canine scent tracking has allowed humans to utilize this animal behaviour in a variety of professions. Through domestication and the human application of dog behaviour, different methods and influential factors on tracking ability have been discovered. While tracking was once considered a predatory technique of dogs in the wild, it has now become widely used by humans.
An earthdog test or earthdog trial tests the working ability and instinct of the small, often short-legged terriers or Dachshunds. These dogs were bred to hunt vermin and other quarry which lived in underground dens. Earthdog den tests involve human-made tunnels that the dogs must navigate, while scenting a rat, "the quarry". The dog must follow the scent to the quarry and then "work" the quarry. Depending on the sanctioning organization, "working" means barking, scratching, staring, pawing, digging; any active behavior. The quarry is protected at all times by wooden bars across the end of the tunnel. The hunting encounter is controlled, and neither the dog nor the quarry are endangered by the activity.
Sailing stones are part of the geological phenomenon in which rocks move and inscribe long tracks along a smooth valley floor without animal intervention. The movement of the rocks occurs when large, thin sheets of ice floating on an ephemeral winter pond break up in the sun. Trails of sliding rocks have been observed and studied in various locations, including Little Bonnie Claire Playa, in Nevada, and most famously at Racetrack Playa, Death Valley National Park, California, where the number and length of tracks are notable.
The Plenty River Trail is a shared use path for cyclists and pedestrians, which follows the Plenty River through the suburbs of Greensborough and Lower Plenty in Melbourne, Victoria, Australia.
Tracking is an element of scouting that encompasses observation, stalking and the following of a trail. Unlike the form of tracking employed in hunting, tracking within the Scouting movement tends to focus on the tracking of people as well as animals. One form of training includes the laying a trail or following a trail laid by others. A trail is made up of a series of signs, largely comprising directions, which are laid on the ground.
Spoor is a trace or a set of footprints by which the progress of someone or something may be followed. Spoor may include tracks, scents, or broken foliage. Spoor is useful for discovering or surveying what types of animals live in an area, or in animal tracking.
A pug impression pad (PIP) is made by preparing a layer of fine soil about 2 cm thick on forest paths so that animals will leave good footprint impressions. PIPs are widely used in India for the census of tigers. The first all-India tiger census in 1972 used this technique.
Dinosaur Footprints in Holyoke, Massachusetts, USA is an 8-acre (3 ha) wilderness reservation purchased for the public in 1935 by The Trustees of Reservations. The Reservation is currently being managed with the assistance from the Massachusetts Department of Conservation and Recreation (DCR). The fossil and plant resources on the adjacent Holyoke Gas and Electric (HG&E) riverfront property are being managed cooperatively by The Trustees, Mass DCR, and HG&E.
An odor or odour is a smell or a scent caused by one or more volatilized chemical compounds generally found in low concentrations that humans and many animals can perceive via their olfactory system. While smell can refer to pleasant and unpleasant odors, the terms scent, aroma, and fragrance are usually reserved for pleasant-smelling odors and are frequently used in the food and cosmetic industry to describe floral scents or to refer to perfumes.
The bloodhound is a large scent hound, originally bred for hunting deer, wild boar, rabbits, and since the Middle Ages, for tracking people. Believed to be descended from hounds once kept at the Abbey of Saint-Hubert, Belgium, in French it is called, le chien de Saint-Hubert.
A limer, or lymer, was a kind of dog, a scenthound, used on a leash in medieval times to find large game before it was hunted down by the pack. It was sometimes known as a lyam hound/dog or lime-hound, from the Middle English word lyam, meaning 'leash'. The French cognate limier has sometimes been used for the dogs in English as well. The type is not to be confused with the bandog, which was also a dog controlled by a leash, typically a chain, but was a watchdog or guard dog.
In animal physiology, hydrodynamic reception refers to the ability of some animals to sense water movements generated by biotic or abiotic sources. This form of mechanoreception is useful for orientation, hunting, predator avoidance, and schooling. Frequent encounters with conditions of low visibility can prevent vision from being a reliable information source for navigation and sensing objects or organisms in the environment. Sensing water movements is one resolution to this problem.
Single wolves or mated pairs typically have higher success rates in hunting than do large packs; single wolves have occasionally been observed to kill large prey such as moose, bison and muskoxen unaided. This contrasts with the commonly held belief that larger packs benefit from cooperative hunting to bring down large game. The size of a wolf hunting pack is related to the number of pups that survived the previous winter, adult survival, and the rate of dispersing wolves leaving the pack. The optimal pack size for hunting elk is four wolves, and for bison a large pack size is more successful.
The road signs, used on the Serbian road network, are regulated by the "Regulation of Traffic Signs", which was last time modified in 2017.