Tubulin GTPase

Last updated
Tubulin GTPase
Identifiers
EC no. 3.6.5.6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Tubulin GTPase (EC 3.6.5.6) is an enzyme with systematic name GTP phosphohydrolase (microtubule-releasing). [1] [2] [3] This enzyme catalyses the following chemical reaction

Contents

GTP + H2O GDP + phosphate

This enzyme participates in tubulin folding and division plane formation.

See also

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

<span class="mw-page-title-main">Microtubule</span> Polymer of tubulin that forms part of the cytoskeleton

Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a dimer of two globular proteins, alpha and beta tubulin into protofilaments that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.

<span class="mw-page-title-main">Guanosine triphosphate</span> Chemical compound

Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only difference being that nucleotides like GTP have phosphates on their ribose sugar. GTP has the guanine nucleobase attached to the 1' carbon of the ribose and it has the triphosphate moiety attached to ribose's 5' carbon.

<span class="mw-page-title-main">Tubulin</span> Superfamily of proteins that make up microtubules

Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton. Microtubules function in many essential cellular processes, including mitosis. Tubulin-binding drugs kill cancerous cells by inhibiting microtubule dynamics, which are required for DNA segregation and therefore cell division.

<span class="mw-page-title-main">CDC42</span> Protein-coding gene in the species Homo sapiens

Cell division control protein 42 homolog is a protein that in humans is encoded by the CDC42 gene. Cdc42 is involved in regulation of the cell cycle. It was originally identified in S. cerevisiae (yeast) as a mediator of cell division, and is now known to influence a variety of signaling events and cellular processes in a variety of organisms from yeast to mammals.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">PAK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene.

<span class="mw-page-title-main">RAP1A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-1A is a protein that in humans is encoded by the RAP1A gene.

<span class="mw-page-title-main">RAP1GAP</span> Protein-coding gene in the species Homo sapiens

Rap1 GTPase-activating protein 1 is an enzyme that in humans is encoded by the RAP1GAP gene.

<span class="mw-page-title-main">RHEB</span> Protein-coding gene in the species Homo sapiens

RHEB also known as Ras homolog enriched in brain (RHEB) is a GTP-binding protein that is ubiquitously expressed in humans and other mammals. The protein is largely involved in the mTOR pathway and the regulation of the cell cycle.

<span class="mw-page-title-main">GNAI1</span> Protein-coding gene in humans

Guanine nucleotide-binding protein G(i), alpha-1 subunit is a protein that in humans is encoded by the GNAI1 gene.

<span class="mw-page-title-main">TUBA4A</span> Protein-coding gene in the species Homo sapiens

Tubulin alpha-4A chain is a protein that in humans is encoded by the TUBA4A gene.

<span class="mw-page-title-main">RALA</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Ral-A (RalA) is a protein that in humans is encoded by the RALA gene on chromosome 7. This protein is one of two paralogs of the Ral protein, the other being RalB, and part of the Ras GTPase family. RalA functions as a molecular switch to activate a number of biological processes, majorly cell division and transport, via signaling pathways. Its biological role thus implicates it in many cancers.

<span class="mw-page-title-main">Alpha-tubulin 3C</span> Protein-coding gene in the species Homo sapiens

Tubulin alpha-3C/D chain is a protein that in humans is encoded by the TUBA3C gene.

<span class="mw-page-title-main">RAP2A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-2a is a protein that in humans is encoded by the RAP2A gene. RAP2A is a member of the Ras-related protein family.

<span class="mw-page-title-main">ARHGEF1</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 1 is a protein that in humans is encoded by the ARHGEF1 gene. This protein is also called RhoGEF1 or p115-RhoGEF.

<span class="mw-page-title-main">ARHGEF11</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 11 is a protein that in humans is encoded by the ARHGEF11 gene. This protein is also called RhoGEF11 or PDZ-RhoGEF.

<span class="mw-page-title-main">GNA13</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-13 is a protein that in humans is encoded by the GNA13 gene.

<span class="mw-page-title-main">GNAI3</span> Protein-coding gene in humans

Guanine nucleotide-binding protein G(k) subunit alpha is a protein that in humans is encoded by the GNAI3 gene.

<span class="mw-page-title-main">GNA12</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-12 is a protein that in humans is encoded by the GNA12 gene.

References

  1. Yu XC, Margolin W (September 1997). "Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro". The EMBO Journal. 16 (17): 5455–63. doi:10.1093/emboj/16.17.5455. PMC   1170176 . PMID   9312004.
  2. Tian G, Bhamidipati A, Cowan NJ, Lewis SA (August 1999). "Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the alpha/beta-tubulin heterodimer". The Journal of Biological Chemistry. 274 (34): 24054–8. doi: 10.1074/jbc.274.34.24054 . PMID   10446175.
  3. Roychowdhury S, Panda D, Wilson L, Rasenick MM (May 1999). "G protein alpha subunits activate tubulin GTPase and modulate microtubule polymerization dynamics". The Journal of Biological Chemistry. 274 (19): 13485–90. doi: 10.1074/jbc.274.19.13485 . PMID   10224115.