Wheeler's delayed-choice experiment

Last updated
John Wheeler, 1995 John Archibald Wheeler 1985.jpg
John Wheeler, 1995

Wheeler's delayed-choice experiment is actually several thought experiments in quantum physics, proposed by John Archibald Wheeler, with the most prominent among them appearing in 1978 and 1984. [1] These experiments are attempts to decide whether light somehow "senses" the experimental apparatus in the double-slit experiment it will travel through and adjusts its behavior to fit by assuming the appropriate determinate state for it, or whether light remains in an indeterminate state, neither wave nor particle until measured. [2]


The common intention of these several types of experiments is to first do something that, according to some hidden-variable models, [3] would make each photon "decide" whether it was going to behave as a particle or behave as a wave, and then, before the photon had time to reach the detection device, create another change in the system that would make it seem that the photon had "chosen" to behave in the opposite way. Some interpreters of these experiments contend that a photon either is a wave or is a particle, and that it cannot be both at the same time. Wheeler's intent was to investigate the time-related conditions under which a photon makes this transition between alleged states of being. His work has been productive of many revealing experiments. He may not have anticipated the possibility that other researchers would tend toward the conclusion that a photon retains both its "wave nature" and "particle nature" until the time it ends its life, e.g., by being absorbed by an electron, which acquires its energy and therefore rises to a higher-energy orbital in its atom.

This line of experimentation proved very difficult to carry out when it was first conceived. Nevertheless, it has proven very valuable over the years since it has led researchers to provide "increasingly sophisticated demonstrations of the wave–particle duality of single quanta". [4] [5] As one experimenter explains, "Wave and particle behavior can coexist simultaneously." [6]


"Wheeler's delayed-choice experiment" refers to a series of thought experiments in quantum physics, the first being proposed by him in 1978. Another prominent version was proposed in 1983. All of these experiments try to get at the same fundamental issues in quantum physics. Many of them are discussed in Wheeler's 1978 article "The 'Past' and the 'Delayed-Choice' Double-Slit Experiment", which has been reproduced in A. R. Marlow's Mathematical Foundations of Quantum Theory, pp. 9–48.

According to the complementarity principle, the 'particle-like' (like exact location) or 'wave-like' (like frequency or amplitude) properties of a photon can be measured, but not both at the same time. What characteristic is measured depends on whether experimenters use a device intended to observe particles or to observe waves. [7] When this statement is applied very strictly, one could argue that by determining the detector type one could force the photon to become manifest only as a particle or only as a wave. Detection of a photon is a destructive process because a photon can never be seen in flight. When a photon is detected it "appears" in the consequences of its demise, e.g., by being absorbed by an electron in a photomultiplier that accepts its energy which is then used to trigger the cascade of events that produces a "click" from that device. A photon always appears at some highly localized point in space and time. In the apparatuses that detect photons, the locations on its detection screen that indicate reception of the photon give an indication of whether or not it was manifesting its wave nature during its flight from photon source to the detection device. Therefore, it is commonly said that in a double-slit experiment a photon exhibits its wave nature when it passes through both of the slits and appears as a dim wash of illumination across the detection screen, and manifests its particle nature when it passes through only one slit and appears on the screen as a highly localized scintillation.

Given the interpretation of quantum physics that says a photon is either in its guise as a wave or in its guise as a particle, the question arises: When does the photon decide whether it is going to travel as a wave or as a particle? Suppose that a traditional double-slit experiment is prepared so that either of the slits can be blocked. If both slits are open and a series of photons are emitted by the laser then an interference pattern will quickly emerge on the detection screen. The interference pattern can only be explained as a consequence of wave phenomena, so experimenters can conclude that each photon "decides" to travel as a wave as soon as it is emitted. If only one slit is available then there will be no interference pattern, so experimenters may conclude that each photon "decides" to travel as a particle as soon as it is emitted.

Simple interferometer

One way to investigate the question of when a photon decides whether to act as a wave or a particle in an experiment is to use the interferometer method. Here is a simple schematic diagram of an interferometer in two configurations:

Open and closed Beam Split and fuse.svg
Open and closed

If a single photon is emitted into the entry port of the apparatus at the lower-left corner, it immediately encounters a beam-splitter. Because of the equal probabilities for transmission or reflection the photon will either continue straight ahead, be reflected by the mirror at the lower-right corner, and be detected by the detector at the top of the apparatus, or it will be reflected by the beam-splitter, strike the mirror in the upper-left corner, and emerge into the detector at the right edge of the apparatus. Observing that photons show up in equal numbers at the two detectors, experimenters generally say that each photon has behaved as a particle from the time of its emission to the time of its detection, has traveled by either one path or the other, and further affirm that its wave nature has not been exhibited.

If the apparatus is changed so that a second beam splitter is placed in the upper-right corner, then part of the beams from each path will travel to the right, where they will combine to exhibit interference on a detection screen. Experimenters must explain these phenomena as consequences of the wave nature of light. Each photon must have traveled by both paths as a wave, because if each photon traveled as a particle along just one path then the many photons sent during the experiment would not produce an interference pattern.

Since nothing else has changed from experimental configuration to experimental configuration, and since in the first case the photon is said to "decide" to travel as a particle and in the second case it is said to "decide" to travel as a wave, Wheeler wanted to know whether, experimentally, a time could be determined at which the photon made its "decision." Would it be possible to let a photon pass through the region of the first beam-splitter while there was no beam-splitter in the second position, thus causing it to "decide" to travel, and then quickly let the second beam-splitter pop up into its path? Having presumably traveled as a particle up to that moment, would the beam splitter let it pass through and manifest itself as would a particle were that second beam splitter not to be there? Or, would it behave as though the second beam-splitter had always been there? Would it manifest interference effects? And if it did manifest interference effects then to have done so it must have gone back in time and changed its "decision" about traveling as a particle to traveling as a wave. Note that Wheeler wanted to investigate several hypothetical statements by obtaining objective data.

Albert Einstein did not like these possible consequences of quantum mechanics. [8] However, when experiments were finally devised that permitted both the double-slit version and the interferometer version of the experiment, it was conclusively shown that a photon could begin its life in an experimental configuration that would call for it to demonstrate its particle nature, end up in an experimental configuration that would call for it to demonstrate its wave nature, and that in these experiments it would always show its wave characteristics by interfering with itself. Furthermore, if the experiment was begun with the second beam-splitter in place but it was removed while the photon was in flight, then the photon would inevitably show up in a detector and not show any sign of interference effects. So the presence or absence of the second beam-splitter would always determine "wave or particle" manifestation. Many experimenters[ who? ] reached an interpretation of the experimental results that said that the change in final conditions would retroactively determine what the photon had "decided" to be as it was entering the first beam-splitter. As mentioned above, Wheeler rejected this interpretation.

Cosmic interferometer

Double quasar known as QSO 0957+561, also known as the "Twin Quasar", which lies just under 9 billion light-years from Earth. QSO B0957+0561.jpg
Double quasar known as QSO 0957+561, also known as the "Twin Quasar", which lies just under 9 billion light-years from Earth.
Wheeler's plan InterGalactic Wheeler.svg
Wheeler's plan

In an attempt to avoid destroying normal ideas of cause and effect, some theoreticians[ who? ] suggested that information about whether there was or was not a second beam-splitter installed could somehow be transmitted from the end point of the experimental device back to the photon as it was just entering that experimental device, thus permitting it to make the proper "decision." So Wheeler proposed a cosmic version of his experiment. In that thought experiment he asks what would happen if a quasar or other galaxy millions or billions of light years away from Earth passes its light around an intervening galaxy or cluster of galaxies that would act as a gravitational lens. A photon heading exactly towards Earth would encounter the distortion of space in the vicinity of the intervening massive galaxy. At that point it would have to "decide" whether to go by one way around the lensing galaxy, traveling as a particle, or go both ways around by traveling as a wave. When the photon arrived at an astronomical observatory at Earth, what would happen? Due to the gravitational lensing, telescopes in the observatory see two images of the same quasar, one to the left of the lensing galaxy and one to the right of it. If the photon has traveled as a particle and comes into the barrel of a telescope aimed at the left quasar image it must have decided to travel as a particle all those millions of years, or so say some experimenters. That telescope is pointing the wrong way to pick up anything from the other quasar image. If the photon traveled as a particle and went the other way around, then it will only be picked up by the telescope pointing at the right "quasar." So millions of years ago the photon decided to travel in its guise of particle and randomly chose the other path. But the experimenters now decide to try something else. They direct the output of the two telescopes into a beam-splitter, as diagrammed, and discover that one output is very bright (indicating positive interference) and that the other output is essentially zero, indicating that the incoming wavefunction pairs have self-cancelled.

Paths separated and paths converged via beam-splitter Wheeler astro lab Beam-splitterVersion.svg
Paths separated and paths converged via beam-splitter

Wheeler then plays the devil's advocate and suggests that perhaps for those experimental results to be obtained would mean that at the instant astronomers inserted their beam-splitter, photons that had left the quasar some millions of years ago retroactively decided to travel as waves, and that when the astronomers decided to pull their beam splitter out again that decision was telegraphed back through time to photons that were leaving some millions of years plus some minutes in the past, so that photons retroactively decided to travel as particles.

Several ways of implementing Wheeler's basic idea have been made into real experiments and they support the conclusion that Wheeler anticipated — that what is done at the exit port of the experimental device before the photon is detected will determine whether it displays interference phenomena or not. Retrocausality is a mirage. [ citation needed ]

Double-slit version

Wheeler's double-slit apparatus. Wheeler telescopes set-up.svg
Wheeler's double-slit apparatus.

A second kind of experiment resembles the ordinary double-slit experiment. The schematic diagram of this experiment shows that a lens on the far side of the double slits makes the path from each slit diverge slightly from the other after they cross each other fairly near to that lens. The result is that at the two wavefunctions for each photon will be in superposition within a fairly short distance from the double slits, and if a detection screen is provided within the region wherein the wavefunctions are in superposition then interference patterns will be seen. There is no way by which any given photon could have been determined to have arrived from one or the other of the double slits. However, if the detection screen is removed the wavefunctions on each path will superimpose on regions of lower and lower amplitudes, and their combined probability values will be much less than the unreinforced probability values at the center of each path. When telescopes are aimed to intercept the center of the two paths, there will be equal probabilities of nearly 50% that a photon will show up in one of them. When a photon is detected by telescope 1, researchers may associate that photon with the wavefunction that emerged from the lower slit. When one is detected in telescope 2, researchers may associate that photon with the wavefunction that emerged from the upper slit. The explanation that supports this interpretation of experimental results is that a photon has emerged from one of the slits, and that is the end of the matter. A photon must have started at the laser, passed through one of the slits, and arrived by a single straight-line path at the corresponding telescope.

The retrocausal explanation, which Wheeler does not accept, says that with the detection screen in place, interference must be manifested. For interference to be manifested, a light wave must have emerged from each of the two slits. Therefore, a single photon upon coming into the double-slit diaphragm must have "decided" that it needs to go through both slits to be able to interfere with itself on the detection screen (shouldn’t the detection screen be placed in front of the double slits?). For no interference to be manifested, a single photon coming into the double-slit diaphragm must have "decided" to go by only one slit because that would make it show up at the camera in the appropriate single telescope.

In this thought experiment the telescopes are always present, but the experiment can start with the detection screen being present but then being removed just after the photon leaves the double-slit diaphragm, or the experiment can start with the detection screen being absent and then being inserted just after the photon leaves the diaphragm. Some theorists aver that inserting or removing the screen in the midst of the experiment can force a photon to retroactively decide to go through the double-slits as a particle when it had previously transited it as a wave, or vice versa. Wheeler does not accept this interpretation.

The double slit experiment, like the other six idealized experiments (microscope, split beam, tilt-teeth, radiation pattern, one-photon polarization, and polarization of paired photons), imposes a choice between complementary modes of observation. In each experiment we have found a way to delay that choice of type of phenomenon to be looked for up to the very final stage of development of the phenomenon, and it depends on whichever type of detection device we then fix upon. That delay makes no difference in the experimental predictions. On this score everything we find was foreshadowed in that solitary and pregnant sentence of Bohr, "...it...can make no difference, as regards observable effects obtainable by a definite experimental arrangement, whether our plans for constructing or handling the instruments are fixed beforehand or whether we prefer to postpone the completion of our planning until a later moment when the particle is already on its way from one instrument to another." [11]

Bohmian interpretation

One of the easiest ways of "making sense" of the delayed-choice paradox is to examine it using Bohmian mechanics. The surprising implications of the original delayed-choice experiment led Wheeler to the conclusion that "no phenomenon is a phenomenon until it is an observed phenomenon", which is a very radical position. Wheeler famously said that the "past has no existence except as recorded in the present", and that the Universe does not "exist, out there independent of all acts of observation".

However Bohm et al. (1985, Nature vol. 315, pp294–97) have shown that the Bohmian interpretation gives a straightforward account of the behaviour of the particle under the delayed-choice set up, without resorting to such a radical explanation. A detailed discussion is available in the open-source article by Basil Hiley and Callaghan, [12] while many of the quantum paradoxes including delayed choice are conveniently and compactly discussed in Chapter 7 of the Book A Physicist's View of Matter and Mind (PVMM) [13] using both Bohmian and standard interpretations.

In Bohm's quantum mechanics, the particle obeys classical mechanics except that its movement takes place under the additional influence of its quantum potential. A photon or an electron has a definite trajectory and passes through one or the other of the two slits and not both, just as it is in the case of a classical particle. The past is determined and stays what it was up to the moment T1 when the experimental configuration for detecting it as a wave was changed to that of detecting a particle at the arrival time T2. At T1, when the experimental set up was changed, Bohm's quantum potential changes as needed, and the particle moves classically under the new quantum potential till T2 when it is detected as a particle. Thus Bohmian mechanics restores the conventional view of the world and its past. The past is out there as an objective history unalterable retroactively by delayed choice, contrary to the radical view of Wheeler.

The "quantum potential" Q(r,T) is often taken to act instantly. But in fact, the change of the experimental set up at T1 takes a finite time dT. The initial potential. Q(r,T<T1) changes slowly over the time interval dT to become the new quantum potential Q(r,T>T1). The book PVMM referred to above makes the important observation (sec. 6.7.1) that the quantum potential contains information about the boundary conditions defining the system, and hence any change of the experimental set up is immediately recognized by the quantum potential, and determines the dynamics of the Bohmian particle.

Experimental details

John Wheeler's original discussion of the possibility of a delayed choice quantum appeared in an essay entitled "Law Without Law," which was published in a book he and Wojciech Hubert Zurek edited called Quantum Theory and Measurement, pp 182–213. He introduced his remarks by reprising the argument between Albert Einstein, who wanted a comprehensible reality, and Niels Bohr, who thought that Einstein's concept of reality was too restricted. Wheeler indicates that Einstein and Bohr explored the consequences of the laboratory experiment that will be discussed below, one in which light can find its way from one corner of a rectangular array of semi-silvered and fully silvered mirrors to the other corner, and then can be made to reveal itself not only as having gone halfway around the perimeter by a single path and then exited, but also as having gone both ways around the perimeter and then to have "made a choice" as to whether to exit by one port or the other. Not only does this result hold for beams of light, but also for single photons of light. Wheeler remarked:

The experiment in the form an interferometer, discussed by Einstein and Bohr, could theoretically be used to investigate whether a photon sometimes sets off along a single path, always follows two paths but sometimes only makes use of one, or whether something else would turn up. However, it was easier to say, "We will, during random runs of the experiment, insert the second half-silvered mirror just before the photon is timed to get there," than it was to figure out a way to make such a rapid substitution. The speed of light is just too fast to permit a mechanical device to do this job, at least within the confines of a laboratory. Much ingenuity was needed to get around this problem.

After several supporting experiments were published, Jacques et al. claimed that an experiment of theirs follows fully the original scheme proposed by Wheeler. [14] [15] Their complicated experiment is based on the Mach–Zender interferometer, involving a triggered diamond N–V colour centre photon generator, polarization, and an electro-optical modulator acting as a switchable beam splitter. Measuring in a closed configuration showed interference, while measuring in an open configuration allowed the path of the particle to be determined, which made interference impossible.

In such experiments, Einstein originally argued, it is unreasonable for a single photon to travel simultaneously two routes. Remove the half-silvered mirror at the [upper right], and one will find that the one counter goes off, or the other. Thus the photon has traveled only one route. It travels only one route. but it travels both routes: it travels both routes, but it travels only one route. What nonsense! How obvious it is that quantum theory is inconsistent!

Interferometer in the lab

The Wheeler version of the interferometer experiment could not be performed in a laboratory until recently because of the practical difficulty of inserting or removing the second beam-splitter in the brief time interval between the photon's entering the first beam-splitter and its arrival at the location provided for the second beam-splitter. This realization of the experiment is done by extending the lengths of both paths by inserting long lengths of fiber optic cable. So doing makes the time interval involved with transits through the apparatus much longer. A high-speed switchable device on one path, composed of a high-voltage switch, a Pockels cell, and a Glan–Thompson prism, makes it possible to divert that path away from its ordinary destination so that path effectively comes to a dead end. With the detour in operation, nothing can reach either detector by way of that path, so there can be no interference. With it switched off the path resumes its ordinary mode of action and passes through the second beam-splitter, making interference reappear. This arrangement does not actually insert and remove the second beam-splitter, but it does make it possible to switch from a state in which interference appears to a state in which interference cannot appear, and do so in the interval between light entering the first beam-splitter and light exiting the second beam-splitter. If photons had "decided" to enter the first beam-splitter as either waves or a particles, they must have been directed to undo that decision and to go through the system in their other guise, and they must have done so without any physical process being relayed to the entering photons or the first beam-splitter because that kind of transmission would be too slow even at the speed of light. Wheeler's interpretation of the physical results would be that in one configuration of the two experiments a single copy of the wavefunction of an entering photon is received, with 50% probability, at one or the other detectors, and that under the other configuration two copies of the wave function, traveling over different paths, arrive at both detectors, are out of phase with each other, and therefore exhibit interference. In one detector the wave functions will be in phase with each other, and the result will be that the photon has 100% probability of showing up in that detector. In the other detector the wave functions will be 180° out of phase, will cancel each other exactly, and there will be a 0% probability of their related photons showing up in that detector. [16]

Interferometer in the cosmos

The cosmic experiment envisioned by Wheeler could be described either as analogous to the interferometer experiment or as analogous to a double-slit experiment. The important thing is that by a third kind of device, a massive stellar object acting as a gravitational lens, photons from a source can arrive by two pathways. Depending on how phase differences between wavefunction pairs are arranged, correspondingly different kinds of interference phenomena can be observed. Whether to merge the incoming wavefunctions or not, and how to merge the incoming wavefunctions can be controlled by experimenters. There are none of the phase differences introduced into the wavefunctions by the experimental apparatus as there are in the laboratory interferometer experiments, so despite there being no double-slit device near the light source, the cosmic experiment is closer to the double-slit experiment. However, Wheeler planned for the experiment to merge the incoming wavefunctions by use of a beam splitter. [17]

The main difficulty in performing this experiment is that the experimenter has no control over or knowledge of when each photon began its trip toward earth, and the experimenter does not know the lengths of each of the two paths between the distant quasar. Therefore, it is possible that the two copies of one wavefunction might well arrive at different times. Matching them in time so that they could interact would require using some kind of delay device on the first to arrive. Before that task could be done, it would be necessary to find a way to calculate the time delay.

One suggestion for synchronizing inputs from the two ends of this cosmic experimental apparatus lies in the characteristics of quasars and the possibility of identifying identical events of some signal characteristic. Information from the Twin Quasars that Wheeler used as the basis of his speculation reach earth approximately 14 months apart. [18] Finding a way to keep a quantum of light in some kind of loop for over a year would not be easy.

Double-slits in lab and cosmos

Replace beam splitter by registering projected telescope images on a common detection screen. Wheeler astro lab.svg
Replace beam splitter by registering projected telescope images on a common detection screen.

Wheeler's version of the double-slit experiment is arranged so that the same photon that emerges from two slits can be detected in two ways. The first way lets the two paths come together, lets the two copies of the wavefunction overlap, and shows interference. The second way moves farther away from the photon source to a position where the distance between the two copies of the wavefunction is too great to show interference effects. The technical problem in the laboratory is how to insert a detector screen at a point appropriate to observe interference effects or to remove that screen to reveal the photon detectors that can be restricted to receiving photons from the narrow regions of space where the slits are found. One way to accomplish that task would be to use the recently developed electrically switchable mirrors and simply change directions of the two paths from the slits by switching a mirror on or off. As of early 2014 no such experiment has been announced.

The cosmic experiment described by Wheeler has other problems, but directing wavefunction copies to one place or another long after the photon involved has presumably "decided" whether to be a wave or a particle requires no great speed at all. One has about a billion years to get the job done.

The cosmic version of the interferometer experiment could easily be adapted to function as a cosmic double-slit device as indicated in the illustration. Wheeler appears not to have considered this possibility. It has, however, been discussed by other writers. [19]

Current experiments of interest

The first real experiment to follow Wheeler's intention for a double-slit apparatus to be subjected to end-game determination of detection method is the one by Walborn et al. [20]

Researchers with access to radio telescopes originally designed for SETI research have explicated the practical difficulties of conducting the interstellar Wheeler experiment. [21]

A recent experiment by Manning et al. confirms the standard predictions of standard quantum mechanics with an atom of Helium. [22]


Ma, Zeilinger et al. have summarized what can be known as a result of experiments that have arisen from Wheeler's proposals. They say:

Any explanation of what goes on in a specific individual observation of one photon has to take into account the whole experimental apparatus of the complete quantum state consisting of both photons, and it can only make sense after all information concerning complementary variables has been recorded. Our results demonstrate that the viewpoint that the system photon behaves either definitely as a wave or definitely as a particle would require faster-than-light communication. Because this would be in strong tension with the special theory of relativity, we believe that such a viewpoint should be given up entirely. [23]

See also


Related Research Articles

Diffraction Phenomenon of the motion of waves

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or opening. It is defined as the bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

Double-slit experiment Physics experiment, showing light can be modelled by both waves and particles

In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena. This type of experiment was first performed, using light, by Thomas Young in 1801, as a demonstration of the wave behavior of light. At that time it was thought that light consisted of either waves or particles. With the beginning of modern physics, about a hundred years later, it was realized that light could in fact show behavior characteristic of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same behavior, which was later extended to atoms and molecules. Thomas Young's experiment with light was part of classical physics well before quantum mechanics, and the concept of wave-particle duality. He believed it demonstrated that the wave theory of light was correct, and his experiment is sometimes referred to as Young's experiment or Young's slits.

Wave interference Phenomenon

In physics, interference is a phenomenon in which two waves superpose to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves. The resulting images or graphs are called interferograms.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to a wavefunction on the space of all possible configurations, it also postulates an actual configuration that exists even when unobserved. The evolution over time of the configuration is defined by a guiding equation that is the nonlocal part of the wave function. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).


Interferometry is a technique in which waves, usually electromagnetic waves, are superimposed, causing the phenomenon of interference, which is used to extract information. Interferometry is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, remote sensing, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

In physics, two wave sources are perfectly coherent if their frequency and waveform are identical and their phase difference is constant. Coherence is an ideal property of waves that enables stationary interference. It contains several distinct concepts, which are limiting cases that never quite occur in reality but allow an understanding of the physics of waves, and has become a very important concept in quantum physics. More generally, coherence describes all properties of the correlation between physical quantities of a single wave, or between several waves or wave packets.

Mach–Zehnder interferometer

In physics, the Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach-Zehnder interferometry with particles other than photons had been demonstrated as well in multiple experiments.

The Afshar experiment is a variation of the double slit experiment in quantum mechanics, devised and carried out by Shahriar Afshar while at the private, Boston-based Institute for Radiation-Induced Mass Studies (IRIMS). The results were presented at a Harvard seminar in March 2004. Afshar claimed that the experiment gives information about which of two paths a photon takes through the apparatus while simultaneously allowing interference between the two paths to be observed, by showing that a grid of wires, placed at the nodes of the interference pattern, does not alter the beams. Afshar claimed that the experiment violates the principle of complementarity of quantum mechanics, which states roughly that the particle and wave aspects of quantum objects cannot be observed at the same time, and specifically the Englert–Greenberger duality relation. The experiment has been repeated by a number of investigators but its interpretation is controversial and there are several theories that explain the effect without violating complementarity.

In physics, the Hanbury Brown and Twiss (HBT) effect is any of a variety of correlation and anti-correlation effects in the intensities received by two detectors from a beam of particles. HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy, although they are also heavily used in the field of quantum optics.

In physics, complementarity is both a theoretical and an experimental result of quantum mechanics, also referred to as principle of complementarity. Formulated by Niels Bohr, a leading founder of quantum mechanics, the complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously.

Quantum mechanics is the study of very small things. It explains the behavior of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the Moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to two major revolutions in physics that created a shift in the original scientific paradigm: the theory of relativity and the development of quantum mechanics. This article describes how physicists discovered the limitations of classical physics and developed the main concepts of the quantum theory that replaced it in the early decades of the 20th century. It describes these concepts in roughly the order in which they were first discovered. For a more complete history of the subject, see History of quantum mechanics.

Elitzur–Vaidman bomb tester Quantum mechanics thought experiment

The Elitzur–Vaidman bomb-tester is a quantum mechanics thought experiment that uses interaction-free measurements to verify that a bomb is functional without having to detonate it. It was conceived in 1993 by Avshalom Elitzur and Lev Vaidman. Since their publication, real-world experiments have confirmed that their theoretical method works as predicted.

In quantum mechanics, the quantum eraser experiment is an interferometer experiment that demonstrates several fundamental aspects of quantum mechanics, including quantum entanglement and complementarity. The quantum eraser experiment is a variation of Thomas Young's classic double-slit experiment. It establishes that when action is taken to determine which of 2 slits a photon has passed through, the photon cannot interfere with itself. When a stream of photons is marked in this way, then the interference fringes characteristic of the Young experiment will not be seen. The experiment also creates situations in which a photon that has been "marked" to reveal through which slit it has passed can later be "unmarked." A photon that has been "marked" cannot interfere with itself and will not produce fringe patterns, but a photon that has been "marked" and then "unmarked" will interfere with itself and produce the fringes characteristic of Young's experiment.

A delayed-choice quantum eraser experiment, first performed by Yoon-Ho Kim, R. Yu, S. P. Kulik, Y. H. Shih and Marlan O. Scully, and reported in early 1999, is an elaboration on the quantum eraser experiment that incorporates concepts considered in Wheeler's delayed-choice experiment. The experiment was designed to investigate peculiar consequences of the well-known double-slit experiment in quantum mechanics, as well as the consequences of quantum entanglement.

The wave–particle duality relation, often loosely referred to as the Englert–Greenberger–Yasin duality relation, or the Englert–Greenberger relation, relates the visibility, , of interference fringes with the definiteness, or distinguishability, , of the photons' paths in quantum optics. As an inequality:

Virgo interferometer

The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumentation are suspended and its laser beam operates in a vacuum. The instrument's two arms are three kilometres long and located in Santo Stefano a Macerata, near the city of Pisa, Italy.

Popper's experiment is an experiment proposed by the philosopher Karl Popper to put to the test different interpretations of quantum mechanics (QM). In fact, as early as 1934, Popper started criticising the increasingly more accepted Copenhagen interpretation, a popular subjectivist interpretation of quantum mechanics. Therefore, in his most famous book Logik der Forschung he proposed a first experiment alleged to empirically discriminate between the Copenhagen Interpretation and a realist interpretation, which he advocated. Einstein, however, wrote a letter to Popper about the experiment in which he raised some crucial objections and Popper himself declared that this first attempt was "a gross mistake for which I have been deeply sorry and ashamed of ever since".

Hardy's paradox is a thought experiment in quantum mechanics devised by Lucien Hardy in 1992–3 in which a particle and its antiparticle may interact without annihilating each other.

The N-slit interferometer is an extension of the double-slit interferometer also known as Young's double-slit interferometer. One of the first known uses of N-slit arrays in optics was illustrated by Newton. In the first part of last century, Michelson described various cases of N-slit diffraction.


  1. Mathematical Foundations of Quantum Theory, edited by A. R. Marlow, Academic Press, 1978. P. 39 lists seven experiments: double slit, microscope, split beam, tilt-teeth, radiation pattern, one-photon polarization, and polarization of paired photons.
  2. George Greenstein and Arthur Zajonc, The Quantum Challenge, p. 37f.
  3. Qin, Wei; Miranowicz, Adam; Long, Guilu; You, J. Q.; Nori, Franco (December 2019). "Proposal to test quantum wave-particle superposition on massive mechanical resonators". npj Quantum Information. 5 (1): 58. doi: 10.1038/s41534-019-0172-9 . ISSN   2056-6387.
  4. Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton (2013). "Quantum erasure with causally disconnected choice". Proceedings of the National Academy of Sciences. 110 (4): 110–1226. arXiv: 1206.6578 . Bibcode:2013PNAS..110.1221M. doi:10.1073/pnas.1213201110. PMC   3557028 . PMID   23288900.
  5. Peruzzo, Alberto; Shadbolt, Peter; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L (2012). "A Quantum Delayed-Choice Experiment". Science. 338 (6107): 634–637. arXiv: 1205.4926 . Bibcode:2012Sci...338..634P. doi:10.1126/science.1226719. PMID   23118183. This experiment uses Bell inequalities to replace the delayed choice devices, but it achieves the same experimental purpose in an elegant and convincing way.
  6. Kaiser, Florian; Coudreau, Thomas; Milman, Pérola; Ostrowsky, Daniel B.; Tanzilli, Sébastien (2012). "Entanglement-Enabled Delayed-Choice Experiment". Science. 338 (6107): 637–640. arXiv: 1206.4348 . Bibcode:2012Sci...338..637K. CiteSeerX . doi:10.1126/science.1226755. PMID   23118184.
  7. Edward G. Steward, Quantum Mechanics: Its Early Development and the Road to Entanglement, p. 145.
  8. Anil Ananthaswamy, New Scientist, 07 January 2–13, p. 1f says:
    For Niels Bohr... this "central mystery" was ...a principle of the ... complementarity principle. .... Look for a particle and you'll see a particle. Look for a wave and that's what you'll see.
    "No reasonable definition of reality could be expected to permit this," [Einstein] huffed in a famous paper ... (Physical Review, vol 47, p 777).
  9. "Seeing double". ESA/Hubble Picture of the Week. Retrieved 20 January 2014.
  10. Mathematical Foundations of Quantum Theory, edited by A.R. Marlow, p. 13
  11. John Archibald Wheeler, ""The'Past" and the 'Delayed Choice' Double-Slit experiment," which appeared in 1978 and has been reprinted is several locations, e.g. Lisa M. Dolling, Arthur F. Gianelli, Glenn N. Statilem, Readings in the Development of Physical Theory, p. 486ff.
  12. http://www.bbk.ac.uk/tpru/BasilHiley/DelayedChoice.pdf
  13. Chandré Dharma-wardana, A Physicist's View of matter and Mind (World Scientific, 2013)
  14. Jacques, Vincent; et al. (2007). "Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment". Science. 315 (5814): 966–968. arXiv: quant-ph/0610241v1 . Bibcode:2007Sci...315..966J. doi:10.1126/science.1136303. PMID   17303748.
  15. Geons, Black Holes & Quantum Foam: A Life in Physics, by John Archibald Wheeler with Kenneth Ford, W.W. Norton & Co., 1998, p. 337
  16. Greenstein and Zajonc, The Quantum Challenge, p. 39f.
  17. Greenstein and Zajonc, The Quantum Challenge, p. 41.
  18. Kundić, Tomislav; Turner, Edwin L; Colley, Wesley N; Gott Iii, J. Richard; Rhoads, James E; Wang, Yun; Bergeron, Louis E; Gloria, Karen A; Long, Daniel C; Malhotra, Sangeeta; Wambsganss, Joachim (1997). "A Robust Determination of the Time Delay in 0957+561A, B and a Measurement of the Global Value of Hubble's Constant". The Astrophysical Journal. 482: 75–82. arXiv: astro-ph/9610162 . Bibcode:1997ApJ...482...75K. doi:10.1086/304147.
  19. Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature ..., by Arkady Plotnitsky, p. 66, footnote.
  20. Walborn, S. P; Terra Cunha, M. O; Pádua, S; Monken, C. H (2002). "Double-slit quantum eraser". Physical Review A. 65 (3). arXiv: quant-ph/0106078 . Bibcode:2002PhRvA..65c3818W. doi:10.1103/PhysRevA.65.033818.
  21. Quantum Astronomy (IV): Cosmic-Scale Double-Slit Experiment
  22. Manning, A. G; Khakimov, R. I; Dall, R. G; Truscott, A. G (2015). "Wheeler's delayed-choice gedanken experiment with a single atom". Nature Physics. 11 (7): 539. Bibcode:2015NatPh..11..539M. doi: 10.1038/nphys3343 .
  23. Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton (2013). "Quantum erasure with causally disconnected choice". Proceedings of the National Academy of Sciences. 110 (4): 1221–1226. Bibcode:2013PNAS..110.1221M. doi:10.1073/pnas.1213201110. PMC   3557028 . PMID   23288900.