11-cis-retinyl-palmitate hydrolase

Last updated
11-cis-retinyl-palmitate hydrolase
Identifiers
EC no. 3.1.1.63
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme 11-cis-retinyl-palmitate hydrolase (EC 3.1.1.63) catalyzes the reaction

11-cis-retinyl palmitate + H2O 11-cis-retinol + palmitate

This enzyme belongs to the family of hydrolases, specifically those acting on carboxylic ester bonds. The systematic name is 11-cis-retinyl-palmitate acylhydrolase. Other names in common use include 11-cis-retinol palmitate esterase, and RPH. This enzyme participates in retinol metabolism. This enzyme has at least one effector, Bile salt.

Related Research Articles

<span class="mw-page-title-main">Vitamin A</span> Essential nutrient

Vitamin A is a fat-soluble vitamin and an essential nutrient for animals. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal, retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene. Vitamin A has multiple functions: it is essential for embryo development and growth, for maintenance of the immune system, and for vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light and color vision.

<span class="mw-page-title-main">Retinol</span> Chemical compound

Retinol, also called vitamin A1, is a fat-soluble vitamin in the vitamin A family that is found in food and used as a dietary supplement. Retinol or other forms of vitamin A are needed for vision, cellular development, maintenance of skin and mucous membranes, immune function and reproductive development. Dietary sources include fish, dairy products, and meat. As a supplement it is used to treat and prevent vitamin A deficiency, especially that which results in xerophthalmia. It is taken by mouth or by injection into a muscle. As an ingredient in skin-care products, it is used to reduce wrinkles and other effects of skin aging.

<span class="mw-page-title-main">Retinal</span> Chemical compound

Retinal is a polyene chromophore. Retinal, bound to proteins called opsins, is the chemical basis of visual phototransduction, the light-detection stage of visual perception (vision).

<span class="mw-page-title-main">Retinoid</span> Group of tetraterpenes, with four terpene units joined head-to-tail

The retinoids are a class of chemical compounds that are vitamers of vitamin A or are chemically related to it. Retinoids have found use in medicine where they regulate epithelial cell growth.

<span class="mw-page-title-main">Retinyl palmitate</span> Vitamin A chemical compound

Retinyl palmitate, or vitamin A palmitate, is the ester of retinol (vitamin A) and palmitic acid, with formula C36H60O2. It is the most abundant form of vitamin A storage in animals.

<span class="mw-page-title-main">Retinoic acid</span> Metabolite of vitamin A

Retinoic acid (used simplified here for all-trans-retinoic acid) is a metabolite of vitamin A1 (all-trans-retinol) that mediates the functions of vitamin A1 required for growth and development. All-trans-retinoic acid is required in chordate animals, which includes all higher animals from fish to humans. During early embryonic development, all-trans-retinoic acid generated in a specific region of the embryo helps determine position along the embryonic anterior/posterior axis by serving as an intercellular signaling molecule that guides development of the posterior portion of the embryo. It acts through Hox genes, which ultimately control anterior/posterior patterning in early developmental stages.

Vitamin A receptor, Stimulated by retinoic acid 6 or STRA6 protein was originally discovered as a transmembrane cell-surface receptor for retinol-binding protein. STRA6 is unique as it functions both as a membrane transporter and a cell surface receptor, particularly as a cytokine receptor. In fact, STRA6 may be the first of a whole new class of proteins that might be known as "cytokine signaling transporters." STRA6 is primarily known as the receptor for retinol binding protein and for its relevance in the transport of retinol to specific sites such as the eye. It does this through the removal of retinol (ROH) from the holo-Retinol Binding Protein (RBP) and transports it into the cell to be metabolized into retinoids and/or kept as a retinylester. As a receptor, after holo-RBP is bound, STRA6 activates the JAK/STAT pathway, resulting in the activation of transcription factor, STAT5. These two functions—retinol transporter and cytokine receptor—while using different pathways, are processes that depend on each other.

The visual cycle is a process in the retina that replenishes the molecule retinal for its use in vision. Retinal is the chromophore of most visual opsins, meaning it captures the photons to begin the phototransduction cascade. When the photon is absorbed, the 11-cis retinal photoisomerizes into all-trans retinal as it is ejected from the opsin protein. Each molecule of retinal must travel from the photoreceptor cell to the RPE and back in order to be refreshed and combined with another opsin. This closed enzymatic pathway of 11-cis retinal is sometimes called Wald's visual cycle after George Wald (1906–1997), who received the Nobel Prize in 1967 for his work towards its discovery.

In enzymology, a retinol dehydrogenase (RDH) (EC 1.1.1.105) is an enzyme that catalyzes the chemical reaction

The enzyme retinoid isomerohydrolase (EC 3.1.1.64, all-trans-retinyl-palmitate hydrolase) catalyzes the reaction

In enzymology, a retinyl-palmitate esterase (EC 3.1.1.21) is an enzyme that catalyzes the chemical reaction

In enzymology, a phosphatidylcholine---retinol O-acyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a retinol O-fatty-acyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">RPE65</span> Protein-coding gene in the species Homo sapiens

Retinal pigment epithelium-specific 65 kDa protein, also known as retinoid isomerohydrolase, is an enzyme of the vertebrate visual cycle that is encoded in humans by the RPE65 gene. RPE65 is expressed in the retinal pigment epithelium and is responsible for the conversion of all-trans-retinyl esters to 11-cis-retinol during phototransduction. 11-cis-retinol is then used in visual pigment regeneration in photoreceptor cells. RPE65 belongs to the carotenoid oxygenase family of enzymes.

<span class="mw-page-title-main">Lecithin retinol acyltransferase</span> Mammalian protein found in Homo sapiens

Lecithin retinol acyltransferase is an enzyme that in humans is encoded by the LRAT gene.

Retinyl acetate is a natural form of vitamin A which is the acetate ester of retinol. It has potential antineoplastic and chemopreventive activities.

11-cis-retinol dehydrogenase (EC 1.1.1.315, RDH5 (gene)) is an enzyme with systematic name 11-cis-retinol:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

The enzyme all-trans-retinyl ester 13-cis isomerohydrolase (EC 3.1.1.90; systematic name all-trans-retinyl ester acylhydrolase, 13-cis retinol forming catalyses the reaction

<span class="mw-page-title-main">Emixustat</span> Chemical compound

Emixustat is a small molecule notable for its establishment of a new class of compounds known as visual cycle modulators (VCMs). Formulated as the hydrochloride salt, emixustat hydrochloride, it is the first synthetic medicinal compound shown to affect retinal disease processes when taken by mouth. Emixustat was invented by the British-American chemist, Ian L. Scott, and is currently in Phase 3 trials for dry, age-related macular degeneration (AMD).

<span class="mw-page-title-main">Retinol-binding protein</span> Family of proteins that bind retinol

Retinol-binding proteins (RBP) are a family of proteins with diverse functions. They are carrier proteins that bind retinol. Assessment of retinol-binding protein is used to determine visceral protein mass in health-related nutritional studies.

References