Adenylyl-(glutamate—ammonia ligase) hydrolase

Last updated
adenylyl-[glutamate-ammonia ligase] hydrolase
Identifiers
EC no. 3.1.4.15
CAS no. 37288-22-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an adenylyl-[glutamate---ammonia ligase] hydrolase (EC 3.1.4.15) is an enzyme that catalyzes the chemical reaction

adenylyl-[L-glutamate:ammonia ligase (ADP-forming)] + H2O adenylate + [L-glutamate:ammonia ligase (ADP-forming)]

Thus, the two substrates of this enzyme are [[adenylyl-[L-glutamate:ammonia ligase (ADP-forming)]]] and H2O, whereas its two products are adenylate and L-glutamate:ammonia ligase (ADP-forming).

This enzyme belongs to the family of hydrolases, specifically those acting on phosphoric diester bonds. The systematic name of this enzyme class is adenylyl-[L-glutamate:ammonia ligase (ADP-forming)] adenylylhydrolase. Other names in common use include adenylyl-[glutamine-synthetase]hydrolase, and adenylyl(glutamine synthetase) hydrolase.

Related Research Articles

<span class="mw-page-title-main">Glutamate dehydrogenase</span> Hexameric enzyme

Glutamate dehydrogenase is an enzyme observed in both prokaryotes and eukaryotic mitochondria. The aforementioned reaction also yields ammonia, which in eukaryotes is canonically processed as a substrate in the urea cycle. Typically, the α-ketoglutarate to glutamate reaction does not occur in mammals, as glutamate dehydrogenase equilibrium favours the production of ammonia and α-ketoglutarate. Glutamate dehydrogenase also has a very low affinity for ammonia, and therefore toxic levels of ammonia would have to be present in the body for the reverse reaction to proceed. However, in brain, the NAD+/NADH ratio in brain mitochondria encourages oxidative deamination. In bacteria, the ammonia is assimilated to amino acids via glutamate and aminotransferases. In plants, the enzyme can work in either direction depending on environment and stress. Transgenic plants expressing microbial GLDHs are improved in tolerance to herbicide, water deficit, and pathogen infections. They are more nutritionally valuable.

<span class="mw-page-title-main">Glutamine synthetase</span> Class of enzymes

Glutamine synthetase (GS) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine:

Carbamoyl phosphate synthetase I is a ligase enzyme located in the mitochondria involved in the production of urea. Carbamoyl phosphate synthetase I transfers an ammonia molecule to a molecule of bicarbonate that has been phosphorylated by a molecule of ATP. The resulting carbamate is then phosphorylated with another molecule of ATP. The resulting molecule of carbamoyl phosphate leaves the enzyme.

<span class="mw-page-title-main">Carbamoyl phosphate synthetase</span> Class of enzymes

Carbamoyl phosphate synthetase catalyzes the ATP-dependent synthesis of carbamoyl phosphate from glutamine or ammonia and bicarbonate. This enzyme catalyzes the reaction of ATP and bicarbonate to produce carboxy phosphate and ADP. Carboxy phosphate reacts with ammonia to give carbamic acid. In turn, carbamic acid reacts with a second ATP to give carbamoyl phosphate plus ADP.

Carbamoyl phosphate synthetase (glutamine-hydrolysing) is an enzyme that catalyzes the reactions that produce carbamoyl phosphate in the cytosol. Its systemic name is hydrogen-carbonate:L-glutamine amido-ligase .

<span class="mw-page-title-main">GMP synthase</span>

Guanosine monophosphate synthetase, also known as GMPS is an enzyme that converts xanthosine monophosphate to guanosine monophosphate.

<span class="mw-page-title-main">Anthranilate synthase</span>

The enzyme anthranilate synthase catalyzes the chemical reaction

In enzymology, an aerobactin synthase (EC 6.3.2.39) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dihydrofolate synthase</span> Class of enzymes

In enzymology, a dihydrofolate synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamate—ethylamine ligase (EC 6.3.1.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamate—methylamine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamate-putrescine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamate—tRNAGln ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamine—tRNA ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylformylglycinamidine synthase</span>

In enzymology, a phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a tetrahydrofolate synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a [glutamate—ammonia-ligase] adenylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">5-Aminoimidazole ribotide</span> Chemical compound

5′-Phosphoribosyl-5-aminoimidazole is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from AIR. It is an intermediate in the adenine pathway and is synthesized from 5′-phosphoribosylformylglycinamidine by AIR synthetase.

<span class="mw-page-title-main">Purine nucleotide cycle</span>

The Purine Nucleotide Cycle is a metabolic pathway in protein metabolism requiring the amino acids aspartate and glutamate. The cycle is used to regulate the levels of adenine nucleotides, in which ammonia and fumarate are generated. AMP coverts into IMP and the byproduct ammonia. IMP converts to S-AMP (adenylosuccinate), which then coverts to AMP and the byproduct fumarate. The fumarate goes on to produce ATP (energy) via oxidative phosphorylation as it enters the Krebs cycle and then the electron transport chain. Lowenstein first described this pathway and outlined its importance in processes including amino acid catabolism and regulation of flux through glycolysis and the Krebs cycle.

<span class="mw-page-title-main">Asparagine synthase (glutamine-hydrolysing)</span>

Asparagine synthase (glutamine-hydrolysing) (EC 6.3.5.4, asparagine synthetase (glutamine-hydrolysing), glutamine-dependent asparagine synthetase, asparagine synthetase B, AS, AS-B) is an enzyme with systematic name L-aspartate:L-glutamine amido-ligase (AMP-forming). This enzyme catalyses the following chemical reaction

References