BpuJI

Last updated
BpuJI N terminal domain
Identifiers
SymbolBpuJI_N
Pfam PF11564
InterPro IPR021108

In molecular biology, BpuJI is a type II restriction endonuclease which recognises the asymmetric sequence 5'-CCCGT and cuts at multiple sites in the surrounding area of the target sequence. The BpuJI protein consists of two distinct modules; an N-terminal DNA recognition domain, and a C-terminal dimerisation and catalysis domain. The N-terminal domain is composed of two winged-helix subdomains and a disrupted linker subdomain. Target sequence recognition occurs through major groove contacts of amino acids in the winged-helix subdomains. [1]

Related Research Articles

A restriction enzyme, restriction endonuclease, or restrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone of the DNA double helix.

Nuclease Class of enzymes

A nuclease is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously affect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning.

Helix-turn-helix Structural motif capable of binding DNA

In proteins, the helix-turn-helix (HTH) is a major structural motif capable of binding DNA. Each monomer incorporates two α helices, joined by a short strand of amino acids, that bind to the major groove of DNA. The HTH motif occurs in many proteins that regulate gene expression. It should not be confused with the helix–loop–helix motif.

Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain. Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically, while many, typically called restriction endonucleases or restriction enzymes, cleave only at very specific nucleotide sequences. Endonucleases differ from exonucleases, which cleave the ends of recognition sequences instead of the middle (endo) portion. Some enzymes known as "exo-endonucleases", however, are not limited to either nuclease function, displaying qualities that are both endo- and exo-like. Evidence suggests that endonuclease activity experiences a lag compared to exonuclease activity.

A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence or have a general affinity to DNA. Some DNA-binding domains may also include nucleic acids in their folded structure.

<i>Fok</i>I

The restriction endonuclease Fok1, naturally found in Flavobacterium okeanokoites, is a bacterial type IIS restriction endonuclease consisting of an N-terminal DNA-binding domain and a non-specific DNA cleavage domain at the C-terminal. Once the protein is bound to duplex DNA via its DNA-binding domain at the 5'-GGATG-3' recognition site, the DNA cleavage domain is activated and cleaves, without further sequence specificity, the first strand 9 nucleotides downstream and the second strand 13 nucleotides upstream of the nearest nucleotide of the recognition site.

<i>Hin</i>dIII

HindIII (pronounced "Hin D Three") is a type II site-specific deoxyribonuclease restriction enzyme isolated from Haemophilus influenzae that cleaves the DNA palindromic sequence AAGCTT in the presence of the cofactor Mg2+ via hydrolysis.

<i>Eco</i>RV

EcoRV is a type II restriction endonuclease isolated from certain strains of Escherichia coli. It has the alternative name Eco32I.

<i>Bam</i>HI

BamHI is a type II restriction endonuclease, having the capacity for recognizing short sequences of DNA and specifically cleaving them at a target site. This exhibit focuses on the structure-function relations of BamHI as described by Newman, et al. (1995). BamHI binds at the recognition sequence 5'-GGATCC-3', and cleaves these sequences just after the 5'-guanine on each strand. This cleavage results in sticky ends which are 4 bp long. In its unbound form, BamHI displays a central b sheet, which resides in between α-helices.

Homing endonuclease

The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthesize them, but do so at very few, or even singular, locations. Repair of the hydrolyzed DNA by the host cell frequently results in the gene encoding the homing endonuclease having been copied into the cleavage site, hence the term 'homing' to describe the movement of these genes. Homing endonucleases can thereby transmit their genes horizontally within a host population, increasing their allele frequency at greater than Mendelian rates.

<i>Bgl</i>II Restriction enzyme

BglII is a type II restriction endonuclease isolated from certain strains of Bacillus globigii.

POU is a family of proteins that have well-conserved homeodomains.

R.EcoRII Restriction enzyme

Restriction endonuclease (REase) EcoRII is an enzyme of restriction modification system (RM) naturally found in Escherichia coli, a Gram-negative bacteria. Its molecular mass is 45.2 kDa, being composed of 402 amino acids.

B3 domain

The B3 DNA binding domain (DBD) is a highly conserved domain found exclusively in transcription factors combined with other domains. It consists of 100-120 residues, includes seven beta strands and two alpha helices that form a DNA-binding pseudobarrel protein fold ; it interacts with the major groove of DNA.

MutS-1

MutS is a mismatch DNA repair protein, originally described in Escherichia coli.

Cfr10I/Bse634I Family of restriction endonucleases

In molecular biology, the Cfr10I/Bse634I family of restriction endonucleases includes the type II restriction endonucleases Cfr10I and Bse634I. They exhibit a conserved tetrameric architecture that is of functional importance, wherein two dimers are arranged, back-to-back, with their putative DNA-binding clefts facing opposite directions. These clefts are formed between two monomers that interact, mainly via hydrophobic interactions supported by a few hydrogen bonds, to form a U-shaped dimer. Each monomer is folded to form a compact alpha-beta structure, whose core is made up of a five-stranded mixed beta-sheet. The monomer may be split into separate N-terminal and C-terminal subdomains at a hinge located in helix alpha3. Both Cfr10I and Bse634I recognise the double-stranded sequence RCCGGY and cleave after the purine R.

Recognition sequence Cut 5' RCCGGY 5' ---R CCGGY--- 3' 3' YGGCCR   3' ---YGGCC R--- 5'
Cas9 Microbial protein found in Streptococcus pyogenes M1 GAS

Cas9 is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic engineering applications. Its main function is to cut DNA and thereby alter a cell's genome. The CRISPR-Cas9 genome editing technique was a significant contributor to the Nobel Prize in Chemistry in 2020 being awarded to Emmanuelle Charpentier and Jennifer Doudna.

Ribonuclease E is a bacterial ribonuclease that participates in the processing of ribosomal RNA and the chemical degradation of bulk cellular RNA.

<i>Eco</i>RI

EcoRI is a restriction endonuclease enzyme isolated from species E. coli. It is a restriction enzyme that cleaves DNA double helices into fragments at specific sites, and is also a part of the restriction modification system. The Eco part of the enzyme's name originates from the species from which it was isolated - "E" denotes generic name which is "Escherichia" and "co" denotes species name, "coli" - while the R represents the particular strain, in this case RY13, and the I denotes that it was the first enzyme isolated from this strain.

References

  1. Sukackaite R, Grazulis S, Bochtler M, Siksnys V (May 2008). "The recognition domain of the BpuJI restriction endonuclease in complex with cognate DNA at 1.3-A resolution". J. Mol. Biol. 378 (5): 1084â–93. doi:10.1016/j.jmb.2008.03.041. PMID   18433771.
This article incorporates text from the public domain Pfam and InterPro: IPR021108