Cardiorenal syndrome | |
---|---|
Specialty | Nephrology |
Cardiorenal syndrome (CRS) is an umbrella term used in the medical field that defines disorders of the heart and kidneys whereby "acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other". [1] When one of these organs fails, the other may subsequently fail. [2] The heart and the kidneys are involved in maintaining hemodynamic stability and organ perfusion through an intricate network. Patients who have renal failure first may be hard to determine if heart failure is concurrent. [3] These two organs communicate with one another through a variety of pathways in an interdependent relationship. In a 2004 report from the National Heart, Lung and Blood Institute, CRS was defined as a condition where treatment of congestive heart failure is limited by decline in kidney function. [4] This definition has since been challenged repeatedly but there still remains little consensus over a universally accepted definition for CRS. At a consensus conference of the Acute Dialysis Quality Initiative (ADQI), the CRS was classified into five subtypes primarily based upon the organ that initiated the insult as well as the acuity of disease. [5]
Cardiorenal Syndrome is characterized by the dysfunction of both the cardiac and renal systems, resulting in a range of clinical manifestations. Many patients will have volume overload and therefore may show clinical signs such as jugular venous distension, generalized swelling of the abdomen and/or the lower legs, and difficulty breathing. [6]
Patients with Type 1 CRS, have a rapid worsening of cardiac function leading to Acute Kidney Injury, which may manifest as oliguria or anuria. [6]
The following risk factors have been associated with increased incidence of CRS. [7]
The pathophysiology of CRS can be attributed to two broad categories of "hemodynamic factors" such as low cardiac output, elevation of both intra-abdominal and central venous pressures, and non-hemodynamic factors or "cardiorenal connectors" such as neurohormonal and inflammatory activation. [8] It was previously believed that low cardiac output in heart failure patients results in decreased blood flow to the kidneys which can lead to progressive deterioration of kidney function. As a result, diuresis of these patients will result in hypovolemia and pre-renal azotemia. However, several studies did not find an association between kidney dysfunction and cardiac output or other hemodynamic parameters. [9] In addition, CRS has been observed in patients with diastolic dysfunction who have normal left ventricular systolic function. [5] Therefore, there must be additional mechanisms involved in the progression of CRS. Elevated intra-abdominal pressures resulting from ascites and abdominal wall edema may be associated with worsening kidney functions in heart failure patients. Several studies have shown that as a result of this increased intra-abdominal pressure there is increased central venous pressure and congestion of the kidneys' veins, which can lead to worsening kidney function. [5] In addition, many neurohormonal and inflammatory agents are implicated in the progression of CRS. These include increased formation of reactive oxygen species, endothelin, arginine vasopressin, and excessive sympathetic activity which can result in myocardial hypertrophy and necrosis. [10] Other cardiorenal connectors include renin-angiotensin-system activation, nitric oxide/reactive oxygen species imbalance, inflammatory factors and abnormal activation of the sympathetic nervous system, which can cause structural and functional abnormalities in both heart and/or the kidney. There is a close interaction within these cardiorenal connectors as well as between these factors and the hemodynamic factors which makes the study of CRS pathophysiology complicated. [8]
It is critical to diagnose CRS at an early stage in order to achieve optimal therapeutic efficacy. However, unlike markers of heart damage or stress such as troponin, creatine kinase, natriuretic peptides, reliable markers for acute kidney injury are lacking. Recently, research has found several biomarkers that can be used for early detection of acute kidney injury before serious loss of organ function may occur. Several of these biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-B-D-glucosaminidase (NAG), Cystatin C, and kidney injury molecule-1 (KIM-1) which have been shown to be involved in tubular damage. [5] Other biomarkers that have been shown to be useful include BNP, IL-18, and fatty acid binding protein (FABP). [5] However, there is great variability in the measurement of these biomarkers and their use in diagnosing CRS must be assessed. [11]
Ronco et al. first proposed a five-part classification system for CRS in 2008 which was also accepted at ADQI consensus conference in 2010. [1] These include:
Type | Inciting event | Secondary disturbance | Example |
---|---|---|---|
Type 1 (acute CRS) | Abrupt worsening of heart function | kidney injury | acute cardiogenic shock or acute decompensation of chronic heart failure |
Type 2 (chronic CRS) | Chronic abnormalities in heart function | progressive chronic kidney disease | chronic heart failure |
Type 3 (acute renocardiac syndrome) | Abrupt worsening of kidney function | acute cardiac disorder (e.g. heart failure, abnormal heart rhythm, or pulmonary edema) | acute kidney failure or glomerulonephritis |
Type 4 (chronic renocardiac syndrome) | Chronic kidney disease | decreased cardiac function, cardiac hypertrophy and/or increased risk of adverse cardiovascular events | chronic glomerular disease |
Type 5 (secondary CRS) | Systemic condition | both heart and kidney dysfunction | diabetes mellitus, sepsis, lupus |
The distinction between CRS type 2 and CRS type 4 is based on the assumption that, also in advanced and chronic disease, two different pathophysiological mechanisms can be distinguished, whereas both CKD and HF often develop due to a common pathophysiological background, most notably hypertension and diabetes mellitus. Furthermore, the feasibility of the distinction between CRS type 2 and 4 in terms of diagnosis can be questioned. [12]
Braam et al. argue that classifying the CRS based on the order in which the organs are affected and the timeframe (acute vs chronic) is too simplistic and without a mechanistic classification it is difficult to study CRS. [8] They view the cardiorenal syndrome in a more holistic, integrative manner. [8] [13] They defined the cardiorenal syndrome as a pathophysiological condition in which combined heart and kidney dysfunction amplifies progression of failure of the individual organ, by inducing similar pathophysiological mechanisms. Therefore, regardless of which organ fails first, the same neurohormonal systems are activated causing accelerated cardiovascular disease, and progression of damage and failure of both organs. These systems are broken down into two broad categories of "hemodynamic factors" and non-hemodynamic factors or "cardiorenal connectors". [8]
Medical management of patients with CRS is often challenging as focus on treatment of one organ may have worsening outcome on the other. It is known that many of the medications used to treat HF may worsen kidney function. "As the population ages and the burden of renal disease and cardiovascular disease continue to rise, efforts to better understand the complicated relationship between these two organ systems are greatly needed." [14] In addition, many trials on HF excluded patients with advanced kidney dysfunction. Therefore, our understanding of CRS management is still limited to this date. [15] One study shows how ACE inhibitors and angiotensin II receptor antagonists have been found to prevent nephropathy in patients who have diabetes. [16] Patients with kidney failure are less likely to get all guideline-based therapies. Patients who have moderate to severe CKD was seen to have similar care when compared to those patients who had normal kidney function. This helps show how healthcare workers can do more to increase the outcome of those suffering. [17]
Kidney failure is very common in patients with congestive heart failure. It was shown that kidney failure complicates one-third of all admissions for heart failure, which is the leading cause of hospitalization in the United States among adults over 65 years old. [5] Not only is this the leading cause of hospitalization, it also increases the stays in the ICU. [21] These complications led to longer hospital stay, higher mortality, and greater chance for readmission. The inpatient mortality was seen to be much higher for patients with much more sever renal dysfunction. [17] The increase of hospital and ICU stays also increases the cost of care in the hospital. Not only are there patients suffering from their disease, they are also suffering financially due to the cost of the hospital stays. [21] Another study found that 39% of patients in NYHA class 4 and 31% of patients in NYHA class 3 had severely impaired kidney function. [22] Similarly, kidney failure can have deleterious effects on cardiovascular function. It was estimated that about 44% of deaths in patients with end-stage kidney failure (ESKF) are due to cardiovascular disease. [23]
Angiotensin-converting-enzyme inhibitors are a class of medication used primarily for the treatment of high blood pressure and heart failure. This class of medicine works by causing relaxation of blood vessels as well as a decrease in blood volume, which leads to lower blood pressure and decreased oxygen demand from the heart.
Heart failure (HF), also known as congestive heart failure (CHF), is a syndrome caused by an impairment in the heart's ability to fill with and pump blood.
Microangiopathy is a disease of the microvessels, small blood vessels in the microcirculation. It can be contrasted to macroangiopathies such as atherosclerosis, where large and medium-sized arteries are primarily affected.
Atrial natriuretic peptide (ANP) or atrial natriuretic factor (ANF) is a natriuretic peptide hormone secreted from the cardiac atria that in humans is encoded by the NPPA gene. Natriuretic peptides are a family of hormone/paracrine factors that are structurally related. The main function of ANP is causing a reduction in expanded extracellular fluid (ECF) volume by increasing renal sodium excretion. ANP is synthesized and secreted by cardiac muscle cells in the walls of the atria in the heart. These cells contain volume receptors which respond to increased stretching of the atrial wall due to increased atrial blood volume.
An ejection fraction (EF) is the volumetric fraction of fluid ejected from a chamber with each contraction. It can refer to the cardiac atrium, ventricle, gall bladder, or leg veins, although if unspecified it usually refers to the left ventricle of the heart. EF is widely used as a measure of the pumping efficiency of the heart and is used to classify heart failure types. It is also used as an indicator of the severity of heart failure, although it has recognized limitations.
Kidney disease, or renal disease, technically referred to as nephropathy, is damage to or disease of a kidney. Nephritis is an inflammatory kidney disease and has several types according to the location of the inflammation. Inflammation can be diagnosed by blood tests. Nephrosis is non-inflammatory kidney disease. Nephritis and nephrosis can give rise to nephritic syndrome and nephrotic syndrome respectively. Kidney disease usually causes a loss of kidney function to some degree and can result in kidney failure, the complete loss of kidney function. Kidney failure is known as the end-stage of kidney disease, where dialysis or a kidney transplant is the only treatment option.
Acute kidney injury (AKI), previously called acute renal failure (ARF), is a sudden decrease in kidney function that develops within seven days, as shown by an increase in serum creatinine or a decrease in urine output, or both.
Chronic kidney disease (CKD) is a type of long-term kidney disease, in which either there is a gradual loss of kidney function which occurs over a period of months to years, or an abnormal kidney structure. Initially generally no symptoms are seen, but later symptoms may include leg swelling, feeling tired, vomiting, loss of appetite, and confusion. Complications can relate to hormonal dysfunction of the kidneys and include high blood pressure, bone disease, and anemia. Additionally CKD patients have markedly increased cardiovascular complications with increased risks of death and hospitalization. CKD can lead to kidney failure requiring kidney dialysis or kidney transplantation.
Fosinopril is an angiotensin converting enzyme (ACE) inhibitor used for the treatment of hypertension and some types of chronic heart failure. Fosinopril is the only phosphonate-containing ACE inhibitor marketed, by Bristol-Myers Squibb under the trade name Monopril. Fosinopril is a cascading pro-drug. The special niche for the medication that differentiates it from the other members of the ACE Inhibitor drug class is that was specifically developed for the use for patients with renal impairment. This was through manipulation of the metabolism and excretion, and is seen that fifty percent of the drug is hepatobiliary cleared, which can compensate for diminished renal clearance. The remaining fifty percent is excreted in urine. It does not need dose adjustment.
Loop diuretics are pharmacological agents that primarily inhibit the Na-K-Cl cotransporter located on the luminal membrane of cells along the thick ascending limb of the loop of Henle. They are often used for the treatment of hypertension and edema secondary to congestive heart failure, liver cirrhosis, or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.
Hepatorenal syndrome (HRS) is a life-threatening medical condition that consists of rapid deterioration in kidney function in individuals with cirrhosis or fulminant liver failure. HRS is usually fatal unless a liver transplant is performed, although various treatments, such as dialysis, can prevent advancement of the condition.
Ivabradine, sold under the brand name Procoralan among others, is a medication, which is a pacemaker current (If) inhibitor, used for the symptomatic management of heart-related chest pain and heart failure. Patients who qualify for use of ivabradine for coronary heart failure are patients who have symptomatic heart failure, with reduced ejection volume, and heart rate at least 70 bpm, and the condition not able to be fully managed by beta blockers.
Troponin I is a cardiac and skeletal muscle protein family. It is a part of the troponin protein complex, where it binds to actin in thin myofilaments to hold the actin-tropomyosin complex in place. Troponin I prevents myosin from binding to actin in relaxed muscle. When calcium binds to the troponin C, it causes conformational changes which lead to dislocation of troponin I. Afterwards, tropomyosin leaves the binding site for myosin on actin leading to contraction of muscle. The letter I is given due to its inhibitory character. It is a useful marker in the laboratory diagnosis of heart attack. It occurs in different plasma concentration but the same circumstances as troponin T - either test can be performed for confirmation of cardiac muscle damage and laboratories usually offer one test or the other.
Cystatin C or cystatin 3, a protein encoded by the CST3 gene, is mainly used as a biomarker of kidney function. Recently, it has been studied for its role in predicting new-onset or deteriorating cardiovascular disease. It also seems to play a role in brain disorders involving amyloid, such as Alzheimer's disease. In humans, all cells with a nucleus produce cystatin C as a chain of 120 amino acids. It is found in virtually all tissues and body fluids. It is a potent inhibitor of lysosomal proteinases and probably one of the most important extracellular inhibitors of cysteine proteases. Cystatin C belongs to the type 2 cystatin gene family.
The ST2 cardiac biomarker is a protein biomarker of cardiac stress encoded by the IL1RL1 gene. ST2 signals the presence and severity of adverse cardiac remodeling and tissue fibrosis, which occurs in response to myocardial infarction, acute coronary syndrome, or worsening heart failure.
A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops in one of the coronary arteries of the heart, causing infarction to the heart muscle. The most common symptom is retrosternal chest pain or discomfort that classically radiates to the left shoulder, arm, or jaw. The pain may occasionally feel like heartburn. This is the dangerous type of Acute coronary syndrome.
Acute decompensated heart failure (ADHF) is a sudden worsening of the signs and symptoms of heart failure, which typically includes difficulty breathing (dyspnea), leg or feet swelling, and fatigue. ADHF is a common and potentially serious cause of acute respiratory distress. The condition is caused by severe congestion of multiple organs by fluid that is inadequately circulated by the failing heart. An attack of decompensation can be caused by underlying medical illness, such as myocardial infarction, an abnormal heart rhythm, infection, or thyroid disease.
Stefan D. Anker is a German cariologist who is Head of Field “Tissue Homeostasis and Cachexia" at Charité University, Berlin, Germany. Previously, he was Professor of Innovative Clinical Trials at University Medical Center Göttingen in Germany. The main focus of the Innovative Clinical Trials department was research in the field of chronic heart failure, including the development and clinical testing of new therapies.
Kidney ischemia is a disease with a high morbidity and mortality rate. Blood vessels shrink and undergo apoptosis which results in poor blood flow in the kidneys. More complications happen when failure of the kidney functions result in toxicity in various parts of the body which may cause septic shock, hypovolemia, and a need for surgery. What causes kidney ischemia is not entirely known, but several pathophysiology relating to this disease have been elucidated. Possible causes of kidney ischemia include the activation of IL-17C and hypoxia due to surgery or transplant. Several signs and symptoms include injury to the microvascular endothelium, apoptosis of kidney cells due to overstress in the endoplasmic reticulum, dysfunctions of the mitochondria, autophagy, inflammation of the kidneys, and maladaptive repair.
Roberto Ferrari is an Italian cardiologist who holds the position of Emeritus Professor at the University of Ferrara, where he was the chair of Cardiology in the School of Medicine until the 2019–2020 academic year.