Charge based boundary element fast multipole method

Last updated

The charge-based formulation of the boundary element method (BEM) is a dimensionality reduction numerical technique that is used to model quasistatic electromagnetic phenomena in highly complex conducting media (targeting, e.g., the human brain) with a very large (up to approximately 1 billion) number of unknowns. The charge-based BEM solves an integral equation of the potential theory [1] written in terms of the induced surface charge density. This formulation is naturally combined with fast multipole method (FMM) acceleration, and the entire method is known as charge-based BEM-FMM. The combination of BEM and FMM is a common technique in different areas of computational electromagnetics and, in the context of bioelectromagnetism, it provides improvements over the finite element method. [2] [3] [4]

Contents

Historical development

Along with more common electric potential-based BEM, [5] [6] the quasistatic charge-based BEM, derived in terms of the single-layer (charge) density, for a single-compartment medium has been known in the potential theory [1] since the beginning of the 20th century. For multi-compartment conducting media, the surface charge density formulation first appeared in discretized form (for faceted interfaces) in the 1964 paper by Gelernter and Swihart. [7] A subsequent continuous form, including time-dependent and dielectric effects, appeared in the 1967 paper by Barnard, Duck, and Lynn. [8] The charge-based BEM has also been formulated for conducting, dielectric, and magnetic media. [9]

In 2009, Greengard et al. [10] successfully applied the charge-based BEM with fast multipole acceleration to molecular electrostatics of dielectrics. A similar approach to realistic modeling of the human brain with multiple conducting compartments was first described by Makarov et al. [11] in 2018. Along with this, the BEM-based multilevel fast multipole method has been widely used in radar and antenna studies at microwave frequencies [12] as well as in acoustics. [13] [14]

Physical background - surface charges in biological media

The charge-based BEM is based on the concept of an impressed (or primary) electric field and a secondary electric field . The impressed field is usually known a priori or is trivial to find. For the human brain, the impressed electric field can be classified as one of the following:

  1. A conservative field derived from an impressed density of EEG or MEG current sources in a homogeneous infinite medium with the conductivity at the source location; [15]
  2. An instantaneous solenoidal field of an induction coil obtained from Faraday's law of induction in a homogeneous infinite medium (air), when transcranial magnetic stimulation (TMS) problems are concerned; [11] [16]
  3. A surface field derived from an impressed surface current density of current electrodes injecting electric current at a boundary of a compartment with conductivity when transcranial direct-current stimulation (tDCS) or deep brain stimulation (DBS) are concerned; [17]
  4. A conservative field of charges deposited on voltage electrodes for tDCS or DBS. This specific problem requires a coupled treatment since these charges will depend on the environment; [17]
  5. In application to multiscale modeling, a field obtained from any other macroscopic numerical solution in a small (mesoscale or microscale) spatial domain within the brain. For example, a constant field can be used. [18]
    Examples of impressed electric field for brain stimulation (TMS/DBS/tDCS/ICMS) and neurophysiological recordings (EEG/MEG). WM is white matter, GM - grey matter, and CSF - cerebrospinal fluid. Figure01 BEM sources revised.png
    Examples of impressed electric field for brain stimulation (TMS/DBS/tDCS/ICMS) and neurophysiological recordings (EEG/MEG). WM is white matter, GM - grey matter, and CSF - cerebrospinal fluid.

When the impressed field is "turned on", free charges located within a conducting volume D immediately begin to redistribute and accumulate at the boundaries (interfaces) of regions of different conductivity in D. A surface charge density appears on the conductivity interfaces. This charge density induces a secondary conservative electric field following Coulomb's law.

One example is a human under a direct current powerline with the known field directed down. The superior surface of the human's conducting body will be charged negatively while its inferior portion is charged positively. These surface charges create a secondary electric field that effectively cancels or blocks the primary field everywhere in the body so that no current will flow within the body under DC steady state conditions.

Another example is a human head with electrodes attached. At any conductivity interface with a normal vector  pointing from an "inside" (-) compartment of conductivity to an "outside" (+) compartment of conductivity , Kirchhoff's current law requires continuity of the normal component of the electric current density. This leads to the interfacial boundary condition in the form

for every facet at a triangulated interface. As long as are different from each other, the two normal components of the electric field, , must also be different. Such a jump across the interface is only possible when a sheet of surface charge exists at that interface. Thus, if an electric current or voltage is applied, the surface charge density follows.

The goal of the numerical analysis is to find the unknown surface charge distribution and thus the total electric field  (and the total electric potential if required) anywhere in space.

Derivation of discrete BEM-FMM using Gauss's law and Coulomb's law. Gauss's law applied to a "pillbox" located on the m-th facet can be used (in combination with Coulomb's law applied to all other facets) to give an approximation of the electric field just inside and outside every facet. Figure02 BEM theory.png
Derivation of discrete BEM-FMM using Gauss's law and Coulomb's law. Gauss's law applied to a "pillbox" located on the m-th facet can be used (in combination with Coulomb's law applied to all other facets) to give an approximation of the electric field just inside and outside every facet.

System of equations for surface charges

Below, a derivation is given based on Gauss's law and Coulomb's law. All conductivity interfaces, denoted by S, are discretized into planar triangular facets  with centers . Assume that an m-th facet with the normal vector  and area carries a uniform surface charge density . If a volumetric tetrahedral mesh were present, the charged facets would belong to tetrahedra with different conductivity values. We first compute the electric field at the point , for i.e., just outside facet 𝑚 at its center. This field contains three contributions:

A similar treatment holds for the electric field  just inside facet 𝑚, but the electric field of the flat sheet of charge changes its sign. Using Coulomb's law to calculate the contribution of facets different from , we find

From this equation, we see that the normal component of the electric field indeed undergoes a jump through the charged interface. This is equivalent to a jump relation of the potential theory. [1] As a second step, the two expressions for are substituted into the interfacial boundary condition , applied to every facet 𝑚. This operation leads to a system of linear equations for unknown charge densities which solves the problem:

where is the electric conductivity contrast at the m-th facet. The normalization constant will cancel out after the solution is substituted in the expression for and becomes redundant.

Application of fast multipole method

For modern characterizations of brain topologies with ever-increasing levels of complexity, the above system of equations for is very large; it is therefore solved iteratively. An initial guess for is the last term on its right-hand side while the sum is ignored. Next, the sum is computed and the initial guess is refined, etc. This solution [11] [20] employs the simple Jacobi iterative method. The more rigorous generalized minimum residual method (GMRES) yields a much faster convergence of the BEM-FMM. [2] [3] [15] [16] [17] In either case, the major work is in computing the underbraced sum in the system of equations above for every at every iteration; this operation corresponds to a repetitive matrix-vector multiplication. However, one can recognize this sum as an electric field (times ) of charges to be computed at  observation points. Such a computation is exactly the task of the fast multipole method, which performs fast matrix-by-vector multiplication in  or even  operations instead of . The FMM3D library [21] realized in both Python and MATLAB can be used for this purpose. It is therefore unnecessary to form or store the dense system matrix typical for the standard BEM.

Continuous charge-based BEM. Near-field correction

The system of equations formulated above is derived with the collocation method and is less accurate. [10] The corresponding integral equation is obtained from the local jump relations of the potential theory [1] [22] and the local interfacial boundary condition of normal electric current continuity. It is a Fredholm integral equation of the second kind

Its derivation does not involve Green's identities (integrations by parts) and is applicable to non-nested geometries. When the Galerkin method is applied and the same zeroth-order basis functions (with a constant charge density for each facet) are still used on triangulated interfaces, we obtain exactly the same discretization as before if we replace the double integrals over surfaces and of triangles and , respectively, by

This approximation is only valid when  is much larger than a typical facet size i.e., in the "far field". Otherwise, semi-analytical formulae [23] [24] and Gaussian quadratures for triangles [25] should be used [11] . Typically, 4 to 32 such neighbor integrals per facet should be precomputed, stored, and then used at every iteration. [11] [2] [16] [17] [26] This is an important correction to the plain fast multipole method in the "near field" which should also be used in the simple discrete formulation derived above. Such a correction makes it possible to obtain an unconstrained numerical (but not anatomical) resolution in the brain. [16]

Applications and limitations

Applications of the charge-based BEM-FMM include modeling brain stimulation [3] [16] [17] [20] with near real-time accurate TMS computations [27] [4] as well as neurophysiological recordings. [15] They also include modeling challenging mesoscale head topologies such as thin brain membranes [28] [26] (dura mater, arachnoid mater, and pia mater). This is particularly important for accurate transcranial direct-current stimulation and electroconvulsive therapy dosage predictions. [29] The BEM-FMM allows for straightforward adaptive mesh refinement including multiple extracerebral brain compartments. [26] [28] Another application is modeling electric field perturbations within densely packed neuronal/axonal arbor. [18] Such perturbations change the biophysical activating function. A charge-based BEM formulation is being developed for promising bi-domain biophysical modeling of axonal processes. [30]

In its present form, the charge-based BEM-FMM is applicable to multi-compartment piecewise homogeneous media only; it cannot handle macroscopically anisotropic tissues. Additionally, the maximum number of facets (degrees of freedom) is limited to approximately for typical academic computer hardware resources used as of 2023.

See also

Related Research Articles

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

<span class="mw-page-title-main">Drude model</span> Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

<span class="mw-page-title-main">Faraday's law of induction</span> Basic law of electromagnetism

Faraday's law of induction is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction, is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

<span class="mw-page-title-main">Reciprocity (electromagnetism)</span> Theorem in classical electromagnetism

In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time-harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invariant linear media under certain constraints. Reciprocity is closely related to the concept of symmetric operators from linear algebra, applied to electromagnetism.

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem.

Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.

<span class="mw-page-title-main">Current density</span> Amount of charge flowing through a unit cross-sectional area per unit time

In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point. In SI base units, the electric current density is measured in amperes per square metre.

In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H are not differentiable. In other words, the medium must be continuous. On the interface of two different media with different values for electrical permittivity and magnetic permeability, that condition does not apply.

The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the n-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source.

The bidomain model is a mathematical model to define the electrical activity of the heart. It consists in a continuum (volume-average) approach in which the cardiac microstructure is defined in terms of muscle fibers grouped in sheets, creating a complex three-dimensional structure with anisotropical properties. Then, to define the electrical activity, two interpenetrating domains are considered, which are the intracellular and extracellular domains, representing respectively the space inside the cells and the region between them.

Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

In magnetohydrodynamics, the induction equation is a partial differential equation that relates the magnetic field and velocity of an electrically conductive fluid such as a plasma. It can be derived from Maxwell's equations and Ohm's law, and plays a major role in plasma physics and astrophysics, especially in dynamo theory.

<span class="mw-page-title-main">Method of moments (electromagnetics)</span> Numerical method in computational electromagnetics

The method of moments (MoM), also known as the moment method and method of weighted residuals, is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method, it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions. This is done by using discrete meshes as in finite difference and finite element methods, often for the surface. The solutions are represented with the linear combination of pre-defined basis functions; generally, the coefficients of these basis functions are the sought unknowns. Green's functions and Galerkin method play a central role in the method of moments.

References

  1. 1 2 3 4 Kress, Rainer (1999). Linear Integral Equations (2 ed.). Springer. ISBN   9780387987002.
  2. 1 2 3 Htet, Aung Thu; Saturnino, Guilherme B; Burnham, Edward H; Noetscher, Gregory M; Nummenmaa, Aapo; Makarov, Sergey N (2019-04-01). "Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS)". Journal of Neural Engineering. 16 (2): 024001. doi:10.1088/1741-2552/aafbb9. ISSN   1741-2560. PMC   6546501 . PMID   30605893.
  3. 1 2 3 Gomez, Luis J.; Dannhauer, Moritz; Koponen, Lari M.; Peterchev, Angel V. (January 2020). "Conditions for numerically accurate TMS electric field simulation". Brain Stimulation. 13 (1): 157–166. doi:10.1016/j.brs.2019.09.015. PMC   6888902 . PMID   31604625.
  4. 1 2 Makaroff, S. N.; Qi, Z.; Rachh, M.; Wartman, W. A.; Weise, K.; Noetscher, G. M.; Daneshzand, M.; Deng, Zhi-De; Greengard, L.; Nummenmaa, A. R. (2023-10-31). "A fast direct solver for surface-based whole-head modeling of transcranial magnetic stimulation". Scientific Reports. 13 (1): 18657. Bibcode:2023NatSR..1318657M. doi:10.1038/s41598-023-45602-5. ISSN   2045-2322. PMC   10618282 . PMID   37907689.
  5. Sarvas, J. (January 1987). "Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem". Physics in Medicine and Biology. 32 (1): 11–22. Bibcode:1987PMB....32...11S. doi:10.1088/0031-9155/32/1/004. ISSN   0031-9155. PMID   3823129. S2CID   250776806.
  6. Mosher, J. C.; Leahy, R. M.; Lewis, P. S. (March 1999). "EEG and MEG: forward solutions for inverse methods". IEEE Transactions on Biomedical Engineering. 46 (3): 245–259. doi:10.1109/10.748978. ISSN   0018-9294. PMID   10097460. S2CID   5323152.
  7. Gelernter, H. L.; Swihart, J. C. (July 1964). "A Mathematical-Physical Model of the Genesis of the Electrocardiogram". Biophysical Journal. 4 (4): 285–301. Bibcode:1964BpJ.....4..285G. doi:10.1016/s0006-3495(64)86783-7. ISSN   0006-3495. PMC   1367507 . PMID   14197788.
  8. Barnard, A. C.; Duck, I. M.; Lynn, M. S. (September 1967). "The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations". Biophysical Journal. 7 (5): 443–462. Bibcode:1967BpJ.....7..443B. doi:10.1016/S0006-3495(67)86598-6. ISSN   0006-3495. PMC   1368073 . PMID   6048873.
  9. Makarov, Sergey N.; Noetscher, Gregory M.; Nazarian, Ara (2016). Low-frequency electromagnetic modeling for electrical and biological systems using MATLAB. Hoboken, New Jersey: Wiley. ISBN   978-1-119-05256-2.
  10. 1 2 Greengard, Leslie; Gueyffier, Denis; Martinsson, Per-Gunnar; Rokhlin, Vladimir (May 2009). "Fast direct solvers for integral equations in complex three-dimensional domains". Acta Numerica. 18: 243–275. doi:10.1017/S0962492906410011. ISSN   1474-0508. S2CID   58895952.
  11. 1 2 3 4 5 Makarov, Sergey N.; Noetscher, Gregory M.; Raij, Tommi; Nummenmaa, Aapo (December 2018). "A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models". IEEE Transactions on Biomedical Engineering. 65 (12): 2675–2683. doi:10.1109/TBME.2018.2813261. ISSN   0018-9294. PMC   7388683 . PMID   29993385.
  12. Song, J.; Cai-Cheng Lu; Weng Cho Chew (October 1997). "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects". IEEE Transactions on Antennas and Propagation. 45 (10): 1488–1493. Bibcode:1997ITAP...45.1488S. doi:10.1109/8.633855.
  13. Piscoya, Rafael; Ochmann, Martin (2015-03-01). "Acoustical Boundary Elements: Theory and Virtual Experiments". Archives of Acoustics. 39 (4): 453–465. doi:10.2478/aoa-2014-0049. ISSN   2300-262X. See also https://projekt.bht-berlin.de/ca/veroeffentlichungen/computational-acoustics-i-ii
  14. Liu, Yijun (2009). Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511605345. ISBN   978-0-521-11659-6.
  15. 1 2 3 Makarov, Sergey N.; Hamalainen, Matti; Okada, Yoshio; Noetscher, Gregory M.; Ahveninen, Jyrki; Nummenmaa, Aapo (January 2021). "Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings". IEEE Transactions on Biomedical Engineering. 68 (1): 308–318. doi:10.1109/TBME.2020.2999271. ISSN   0018-9294. PMC   7704617 . PMID   32746015.
  16. 1 2 3 4 5 Makarov, Sergey N; Wartman, William A; Daneshzand, Mohammad; Fujimoto, Kyoko; Raij, Tommi; Nummenmaa, Aapo (2020-08-04). "A software toolkit for TMS electric-field modeling with boundary element fast multipole method: an efficient MATLAB implementation". Journal of Neural Engineering. 17 (4): 046023. Bibcode:2020JNEng..17d6023M. doi:10.1088/1741-2552/ab85b3. ISSN   1741-2552. PMID   32235065. S2CID   213777043.
  17. 1 2 3 4 5 Makarov, Sergey N; Golestanirad, Laleh; Wartman, William A; Nguyen, Bach Thanh; Noetscher, Gregory M; Ahveninen, Jyrki P; Fujimoto, Kyoko; Weise, Konstantin; Nummenmaa, Aapo R (2021-08-01). "Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes". Journal of Neural Engineering. 18 (4): 0460d4. Bibcode:2021JNEng..18d60d4M. doi:10.1088/1741-2552/ac17d7. ISSN   1741-2560. PMC   8783394 . PMID   34311449.
  18. 1 2 Noetscher, Gregory M.; Tang, Dexuan; Nummenmaa, Aapo R.; Bingham, Clayton S.; McIntyre, Cameron C.; Makaroff, Sergey N. (Jan 2024). "Estimations of Charge Deposition Onto Convoluted Axon Surfaces Within Extracellular Electric Fields". IEEE Transactions on Biomedical Engineering. 71 (1): 307–317. doi:10.1109/TBME.2023.3299734. ISSN   1558-2531. PMC   10837334 . PMID   37535481. S2CID   260487095.
  19. "Electric Field, Flat Sheets of Charge". hyperphysics.phy-astr.gsu.edu. Retrieved 2023-12-29.
  20. 1 2 Müller, E.; Petković, B.; Ziolkowski, M.; Weise, K.; Toepfer, H.; Haueisen, J. (2023). "An Improved GPU Optimized Fictitious Surface Charge Method for Transcranial Magnetic Stimulation". IEEE Transactions on Magnetics. 60 (3): 1–4. doi:10.1109/TMAG.2023.3334747. ISSN   0018-9464. S2CID   265559793.
  21. Askham, Travis; Gimbutas, Zydrunas; Greengard, Leslie; Lu, Libin; Magland, Jeremy; Malhotra, Dhairya; O'Neil, Mike; Rachh, Manas; Rokhlin, Vladimir. "FMM3D Library". Flatiron Institute Fast Multipole Libraries. Flatiron Institute. Retrieved 15 December 2023.
  22. Nuñez Ponasso, Guillermo (December 2023). "A survey on integral equations for bioelectric modeling". HAL open science.
  23. Zhongde Wang; Volakis, J.; Saitou, K.; Kurabayashi, K. (December 2003). "Comparison of semi-analytical formulations and gaussian-quadrature rules for quasi-static douwe-surface potential integrals". IEEE Antennas and Propagation Magazine. 45 (6): 96–102. Bibcode:2003IAPM...45...96W. doi:10.1109/MAP.2003.1282185. hdl: 2027.42/87252 . ISSN   1045-9243.
  24. Wilton, D.; Rao, S.; Glisson, A.; Schaubert, D.; Al-Bundak, O.; Butler, C. (March 1984). "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains". IEEE Transactions on Antennas and Propagation. 32 (3): 276–281. Bibcode:1984ITAP...32..276W. doi:10.1109/TAP.1984.1143304. ISSN   0096-1973.
  25. Stroud, A. H. (1971-01-01). Approximate Calculation of Multiple Integrals. Prentice-Hall.
  26. 1 2 3 Wartman, William A.; Weise, Konstantin; Rachh, Manas; Morales, Leah; Deng, Zhi-De; Nummenmaa, Aapo; Makaroff, Sergey N. (2023-08-15), "An Adaptive H-Refinement Method for the Boundary Element Fast Multipole Method for Quasi-static Electromagnetic Modeling", BioRxiv: The Preprint Server for Biology, doi:10.1101/2023.08.11.552996, PMC   10461998 , PMID   37645957 , retrieved 2023-12-25
  27. Daneshzand, Mohammad; Makarov, Sergey N.; de Lara, Lucia I. Navarro; Guerin, Bastien; McNab, Jennifer; Rosen, Bruce R.; Hämäläinen, Matti S.; Raij, Tommi; Nummenmaa, Aapo (2021-08-15). "Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach". NeuroImage. 237: 118097. doi:10.1016/j.neuroimage.2021.118097. ISSN   1095-9572. PMC   8353625 . PMID   33940151.
  28. 1 2 Weise, Konstantin; Wartman, William A.; Knösche, Thomas R.; Nummenmaa, Aapo R.; Makarov, Sergey N. (2022). "The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement". Brain Stimulation. 15 (3): 654–663. doi:10.1016/j.brs.2022.04.009. ISSN   1876-4754. PMID   35447379.
  29. Deng, Zhi-De; Argyelan, Miklos; Miller, Jeremy; Quinn, Davin K.; Lloyd, Megan; Jones, Thomas R.; Upston, Joel; Erhardt, Erik; McClintock, Shawn M.; Abbott, Christopher C. (March 2022). "Electroconvulsive therapy, electric field, neuroplasticity, and clinical outcomes". Molecular Psychiatry. 27 (3): 1676–1682. doi:10.1038/s41380-021-01380-y. ISSN   1476-5578. PMC   9095458 . PMID   34853404.
  30. Czerwonky, David M.; Aberra, Aman S.; Gomez, Luis J. (2023-12-16), "A Boundary Element Method of Bidomain Modeling for Predicting Cellular Responses to Electromagnetic Fields", BioRxiv: The Preprint Server for Biology, doi:10.1101/2023.12.15.571917, PMC   10760105 , PMID   38168351, S2CID   266363593 , retrieved 2023-12-27