Observation data Epoch J2000 Equinox | |
---|---|
Constellation | Cygnus |
Right ascension | 19h 37m 57.7155s |
Declination | 46° 17′ 08.9428″ |
Apparent magnitude (V) | 15.06 |
Characteristics | |
Evolutionary stage | main sequence star |
Spectral type | G8V |
V−R color index | -0.29 |
R−I color index | 0.46 |
J−H color index | 0.377 |
J−K color index | 0.457 |
Variable type | ROT [1] |
Astrometry | |
Radial velocity (Rv) | 0±7 km/s |
Proper motion (μ) | RA: -2.343±0.039 mas/yr Dec.: -1.073±0.041 mas/yr |
Parallax (π) | 1.0647 ± 0.0204 mas |
Distance | 3,060 ± 60 ly (940 ± 20 pc) |
Details [2] [3] [4] | |
Mass | 0.923 M☉ |
Radius | 0.816 R☉ |
Surface gravity (log g) | 4.54±0.01 cgs |
Temperature | 5545 K |
Metallicity [Fe/H] | 0.22 dex |
Rotation | period 20 days |
Age | 2.5-4 Gyr |
Other designations | |
KOI-217, BOKS 40959, KIC 9595827, 2MASS J19392772+4617090, Gaia DR2 2080095679848047872 [5] | |
Database references | |
SIMBAD | data |
Kepler-71 is a yellow main sequence star in the constellation of Cygnus.
Kepler-71 is enriched by heavy elements at 170% of Sun metallicity, young and has a very prominent starspot activity. Starspots are covering about 40% of star surface at transit latitudes, each planetary transit passing over an average six starspots. [2] The bright facula regions are even more extensive. [6] Unlike Sun, the photosphere of Kepler-71 rotates nearly like rigid body, with differential rotation not exceeding 2%. [4]
The "Hot Jupiter" class planet Kepler-71b was discovered around Kepler-71 in 2010. [3]
Companion (in order from star) | Mass | Semimajor axis (AU) | Orbital period (days) | Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | — | 0.05029+0.00002 −0.00006 | 3.905079476+0.000008 −0.000009 | 0 | 89.8+0.2 −0.4 ° | 1.1987±0.0044 RJ |
Lyra is a small constellation. It is one of the 48 listed by the 2nd century astronomer Ptolemy, and is one of the modern 88 constellations recognized by the International Astronomical Union. Lyra was often represented on star maps as a vulture or an eagle carrying a lyre, and hence is sometimes referred to as Vultur Cadens or Aquila Cadens, respectively. Beginning at the north, Lyra is bordered by Draco, Hercules, Vulpecula, and Cygnus. Lyra is nearly overhead in temperate northern latitudes shortly after midnight at the start of summer. From the equator to about the 40th parallel south it is visible low in the northern sky during the same months.
51 Pegasi, formally named Helvetios, is a Sun-like star located 50.6 light-years from Earth in the constellation of Pegasus. It was the first main-sequence star found to have an exoplanet orbiting it.
54 Piscium is an orange dwarf star approximately 36 light-years away in the constellation of Pisces. In 2003, an extrasolar planet was confirmed to be orbiting the star, and in 2006, a brown dwarf was also discovered orbiting it.
HD 89744 is a star in the northern circumpolar constellation of Ursa Major, positioned about 0.4° due south of the bright star Tania Australis. This object has a yellow-white hue and is dimly visible to the naked eye with an apparent visual magnitude of 5.73. The distance to this star has been measured using the parallax method, which locates it 126 light years from the Sun. It is drifting closer with a radial velocity of −4.4 km/s. There are two known exoplanets orbiting this star.
109 Piscium is a yellow hued G-type main-sequence star located about 108 light-years away in the zodiac constellation of Pisces. It is near the lower limit of visibility to the naked eye with an apparent visual magnitude of 6.27. The star is moving closer to the Earth with a heliocentric radial velocity of −45.5 km/s. It has one known exoplanet.
Kappa1 Ceti, Latinized from κ1 Ceti, is a variable yellow dwarf star approximately 30 light-years away in the equatorial constellation of Cetus.
Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of January 2024 have been observed directly, with even fewer being resolved from their host star.
HD 154345 is a star in the northern constellation of Hercules. With an apparent visual magnitude of +6.76 it is a challenge to view with the naked eye, but using binoculars it is an easy target. The distance to this star is 59.6 light years based on parallax, but it is drifting closer with a radial velocity of −47 km/s. At least one exoplanet is orbiting this star.
This page describes exoplanet orbital and physical parameters.
Kepler-17 is a main-sequence yellow dwarf star that is much more active than the Sun with starspots covering roughly 6% of its surface. Starspots are long-lived, with at least one persisting for 1400 days.
Kepler-25 is a star in the northern constellation of Lyra. It is slightly larger and more massive than the Sun, with a luminosity 21⁄2 times that of the Sun. With an apparent visual magnitude of 10.6, this star is too faint to be seen with the naked eye.
Kepler-45, formerly known as KOI-254, is a star in the northern constellation of Cygnus. It is located at the celestial coordinates: right ascension 19h 31m 29.495s, declination +41° 03′ 51.37″. With an apparent visual magnitude of 16.88, this star is too faint to be seen with the naked eye.
Kepler-186 is a main-sequence M1-type dwarf star, located 178.5 parsecs away in the constellation of Cygnus. The star is slightly cooler than the sun, with roughly half its metallicity. It is known to have five planets, including the first Earth-sized world discovered in the habitable zone: Kepler-186f. The star hosts four other planets discovered so far, though they all orbit interior to the habitable zone.
Kepler-84 is a Sun-like star 4,700 light-years from the Sun. It is a G-type star. The stellar radius measurement has a large uncertainty of 48% as in 2017, complicating the modelling of the star. The Kepler-84 star has two suspected stellar companions. Four red dwarfs are few arcseconds away and at least one is probably gravitationally bound to Kepler-84. Another is a yellow star of mass 0.855M☉ on projected separations of 0.18±0.05″ or 0.26″.
HK Aquarii is a single variable star in the equatorial constellation of Aquarius. It is invisible to the naked eye, having an average apparent visual magnitude that fluctuates around 10.99. The star is located at a distance of 81 light years from the Sun based on parallax. The radial velocity is poorly constrained but it appears to be drifting further away at a rate of ~2 km/s.
Kepler-160 is a main-sequence star approximately the width of our Galactic arm away in the constellation Lyra, first studied in detail by the Kepler Mission, a NASA-led operation tasked with discovering terrestrial planets. The star, which is very similar to the Sun in mass and radius, has three confirmed planets and one unconfirmed planet orbiting it.
Kepler-429 is a variable subdwarf B star in the constellation Lyra, about 5,900 light years away.
Kepler-411 is a binary star system. Its primary star Kepler-411A is a K-type main-sequence star, orbited by the red dwarf star Kepler-411B on a wide orbit, discovered in 2012.
Kepler-410 is a binary star system. Its primary star, also known as Kepler-410A, is a F-type subgiant star, orbited by the orange dwarf star Kepler-410B on a wide orbit. The companion star was discovered in 2012.