N-acetylgalactosaminoglycan deacetylase

Last updated
N-acetylgalactosaminoglycan deacetylase
Identifiers
EC no. 3.1.1.58
CAS no. 52410-59-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme N-acetylgalactosaminoglycan deacetylase (EC 3.1.1.58) catalyzes the reaction

N-acetyl-D-galactosaminoglycan + H2O D-galactosaminoglycan + acetate

This enzyme belongs to the family of hydrolases, specifically those acting on carboxylic ester bonds. The systematic name is N-acetyl-D-galactosaminoglycan acetylhydrolase. Other names in common use include polysaccharide deacetylase, Vi-polysaccharide deacetylase, and N-acetyl galactosaminoglycan deacetylase.

Related Research Articles

<span class="mw-page-title-main">Acetyl group</span> Chemical group, –C(=O)CH₃

In organic chemistry, an acetyl group is a functional group denoted by the chemical formula −COCH3 and the structure −C(=O)−CH3. It is sometimes represented by the symbol Ac. In IUPAC nomenclature, an acetyl group is called an ethanoylgroup.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. In general, they suppress gene expression.

The enzyme hyaluronate lyase catalyzes the chemical reaction

The enzyme 6-acetylglucose deacetylase (EC 3.1.1.33) catalyzes the reaction

The enzyme cephalosporin-C deacetylase (EC 3.1.1.41) catalyzes the reaction

In enzymology, an acetylornithine deacetylase (EC 3.5.1.16) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetyl-beta-alanine deacetylase (EC 3.5.1.21) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetyldiaminopimelate deacetylase (EC 3.5.1.47) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acetylglucosamine-6-phosphate deacetylase</span>

In enzymology, N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25), also known as GlcNAc-6-phosphate deacetylase or NagA, is an enzyme that catalyzes the deacetylation of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to glucosamine-6-phosphate (GlcN-6-P):

In enzymology, a N-acetylglucosamine deacetylase (EC 3.5.1.33) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetylglucosaminylphosphatidylinositol deacetylase (EC 3.5.1.89) is an enzyme that catalyzes the chemical reaction

2-deoxystreptamine N-acetyl-D-glucosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:2-deoxystreptamine N-acetyl-D-glucosaminyltransferase. This enzyme catalyses the following chemical reaction

UDP-GlcNAc:ribostamycin N-acetylglucosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:ribostamycin N-acetylglucosaminyltransferase. This enzyme catalyses the following chemical reaction

Xaa-methyl-His dipeptidase is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Epimerox</span> Chemical compound

Epimerox is an experimental broad-spectrum antibiotic compound being developed by scientists at the Rockefeller University and Astex Pharmaceuticals. It is a small molecule inhibitor compound that blocks the activity of the enzyme UDP-N-acetylglucosamine 2-epimerase, an epimerase enzyme that is called 2-epimerase for short.

N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (EC 3.5.1.103, MshB) is an enzyme with systematic name 1-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-1D-myo-inositol acetylhydrolase. This enzyme catalyses the following chemical reaction

Peptidoglycan-N-acetylglucosamine deacetylase (EC 3.5.1.104, HP310, PgdA, SpPgdA, BC1960, peptidoglycan deacetylase, N-acetylglucosamine deacetylase, peptidoglycan GlcNAc deacetylase, peptidoglycan N-acetylglucosamine deacetylase, PG N-deacetylase) is an enzyme with systematic name peptidoglycan-N-acetylglucosamine amidohydrolase. This enzyme catalyses the following chemical reaction

Chitin disaccharide deacetylase (EC 3.5.1.105, chitobiose amidohydolase, COD, chitin oligosaccharide deacetylase, chitin oligosaccharide amidohydolase) is an enzyme with systematic name 2-(acetylamino)-4-O-(2-(acetylamino)-2-deoxy-beta-D-glucopyranosyl)-2-deoxy-D-glucopyranose acetylhydrolase. This enzyme catalyses the following chemical reaction

2'''-acetyl-6'''-hydroxyneomycin C deacetylase (EC 3.5.1.113, neoL (gene)) is an enzyme with systematic name 2'''-acetyl-6'''-hydroxyneomycin C hydrolase (acetate-forming). This enzyme catalyses the following chemical reaction

References