Nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase

Last updated
nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase
Identifiers
EC no. 2.4.2.21
CAS no. 37277-76-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Phosphoribosyltransferase
PDB 1j33 EBI.jpg
crystal structure of cobt from thermus thermophilus hb8
Identifiers
SymbolDBI_PRT
Pfam PF02277
InterPro IPR003200
SCOP2 1d0s / SCOPe / SUPFAM
CDD cd02439
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In enzymology, a nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21) is an enzyme that catalyzes the chemical reaction

Contents

beta-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole nicotinate + alpha-ribazole 5'-phosphate

Thus, the two substrates of this enzyme are beta-nicotinate D-ribonucleotide and 5,6-dimethylbenzimidazole, whereas its two products are nicotinate and alpha-ribazole 5'-phosphate.

This enzyme belongs to the family of glycosyltransferases, specifically the pentosyltransferases. The systematic name of this enzyme class is nicotinate-nucleotide:5,6-dimethylbenzimidazole phospho-D-ribosyltransferase. Other names in common use include CobT, nicotinate mononucleotide-dimethylbenzimidazole phosphoribosyltransferase, nicotinate ribonucleotide:benzimidazole (adenine) phosphoribosyltransferase, nicotinate-nucleotide:dimethylbenzimidazole phospho-D-ribosyltransferase, and nicotinate mononucleotide (NaMN):5,6-dimethylbenzimidazole phosphoribosyltransferase. This enzyme is part of the biosynthetic pathway to cobalamin (vitamin B12) in bacteria.

Function

This enzyme plays a central role in the synthesis of alpha-ribazole-5'-phosphate, an intermediate for the lower ligand of cobalamin. [1] It is one of the enzymes of the anaerobic pathway of cobalamin biosynthesis, and one of the four proteins (CobU, CobT, CobC, and CobS) involved in the synthesis of the lower ligand and the assembly of the nucleotide loop. [2] [3]

Biosynthesis of cobalamin

Vitamin B12 (cobalamin) is used as a cofactor in a number of enzyme-catalysed reactions in bacteria, archaea and eukaryotes. [4] The biosynthetic pathway to adenosylcobalamin from its five-carbon precursor, 5-aminolaevulinic acid, can be divided into three sections: (1) the biosynthesis of uroporphyrinogen III from 5-aminolaevulinic acid; (2) the conversion of uroporphyrinogen III into the ring-contracted, deacylated intermediate precorrin 6 or cobalt-precorrin 6; and (3) the transformation of this intermediate to form adenosylcobalamin. [5] Cobalamin is synthesised by bacteria and archaea via two alternative routes that differ primarily in the steps of section 2 that lead to the contraction of the macrocycle and excision of the extruded carbon molecule (and its attached methyl group). [6] One pathway (exemplified by Pseudomonas denitrificans ) incorporates molecular oxygen into the macrocycle as a prerequisite to ring contraction, and has consequently been termed the aerobic pathway. The alternative, anaerobic, route (exemplified by Salmonella typhimurium ) takes advantage of a chelated cobalt ion, in the absence of oxygen, to set the stage for ring contraction. [5]

Structural studies

As of late 2007, 28 structures have been solved for this class of enzymes, with PDB accession codes 1D0S, 1D0V, 1JH8, 1JHA, 1JHM, 1JHP, 1JHQ, 1JHR, 1JHU, 1JHV, 1JHX, 1JHY, 1L4B, 1L4E, 1L4F, 1L4G, 1L4H, 1L4K, 1L4L, 1L4M, 1L4N, 1L5F, 1L5K, 1L5L, 1L5M, 1L5N, 1L5O, and 1WX1.

Related Research Articles

<span class="mw-page-title-main">Phosphoribosyl pyrophosphate</span> Chemical compound

Phosphoribosyl pyrophosphate (PRPP) is a pentose phosphate. It is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, as well as in pyrimidine nucleotide formation. Hence it is a building block for DNA and RNA. The vitamins thiamine and cobalamin, and the amino acid tryptophan also contain fragments derived from PRPP. It is formed from ribose 5-phosphate (R5P) by the enzyme ribose-phosphate diphosphokinase:

In enzymology, a precorrin-4 C11-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Precorrin-6A synthase (deacetylating)</span>

In enzymology, precorrin-6A synthase (deacetylating) (EC 2.1.1.152) is an enzyme that catalyzes the chemical reaction

In enzymology, a precorrin-6A reductase (EC 1.3.1.54) is an enzyme that catalyzes the chemical reaction

In enzymology, a precorrin-3B synthase (EC 1.14.13.83) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cob(II)yrinic acid a,c-diamide reductase</span>

In enzymology, a cob(II)yrinic acid a,c-diamide reductase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Precorrin-8X methylmutase</span>

In enzymology, a precorrin-8X methylmutase is an enzyme that catalyzes the chemical reaction

The enzyme threonine-phosphate decarboxylase (EC 4.1.1.81) catalyzes the chemical reaction

In enzymology, an adenosylcobyric acid synthase (glutamine-hydrolysing) (EC 6.3.5.10) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalt chelatase</span> Enzyme

Cobalt chelatase (EC 6.6.1.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing) (EC 6.3.5.9) is an enzyme that catalyzes the chemical reaction

The primary biochemical reaction catalyzed by the enzyme adenosylcobalamin/α-ribazole phosphatase (formerly α-ribazole phosphatase) (EC 3.1.3.73) is

<span class="mw-page-title-main">Nicotinate phosphoribosyltransferase</span>

In enzymology, a nicotinate phosphoribosyltransferase (EC 6.3.4.21) is an enzyme that catalyzes the chemical reaction

In enzymology, an adenosylcobinamide kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Adenosylcobinamide-phosphate guanylyltransferase</span> Class of enzymes

In enzymology, an adenosylcobinamide-phosphate guanylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cob(I)yrinic acid a,c-diamide adenosyltransferase</span> Class of enzymes

In molecular biology, cob(I)yrinic acid a,c-diamide adenosyltransferase EC 2.5.1.17 is an enzyme which catalyses the conversion of cobalamin into one of its coenzyme forms, adenosylcobalamin. Adenosylcobalamin is required as a cofactor for the activity of certain enzymes. AdoCbl contains an adenosyl moiety liganded to the cobalt ion of cobalamin via a covalent Co-C bond.

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

5,6-dimethylbenzimidazole synthase (EC 1.14.99.40, BluB) is an enzyme with systematic name FMNH2 oxidoreductase (5,6-dimethylbenzimidazole forming). This enzyme catalyses the following chemical reaction

Adenosylcobinamide-GDP ribazoletransferase is an enzyme with systematic name adenosylcobinamide-GDP:alpha-ribazole ribazoletransferase. This enzyme catalyses the following chemical reaction

Adenosylcobinamide-phosphate synthase is an enzyme with systematic name adenosylcobyric acid:(R)-1-aminopropan-2-yl phosphate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

References

  1. Trzebiatowski JR, O'Toole GA, Escalante-Semerena JC (June 1994). "The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin". J. Bacteriol. 176 (12): 3568–75. doi:10.1128/jb.176.12.3568-3575.1994. PMC   205545 . PMID   8206834.
  2. Cheong CG, Escalante-Semerena JC, Rayment I (October 2002). "Capture of a labile substrate by expulsion of water molecules from the active site of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella enterica". J. Biol. Chem. 277 (43): 41120–7. doi: 10.1074/jbc.M203535200 . PMID   12101181.
  3. Lawrence JG, Roth JR (November 1995). "The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli". J. Bacteriol. 177 (22): 6371–80. doi:10.1128/jb.177.22.6371-6380.1995. PMC   177486 . PMID   7592411.
  4. Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, Thermes C (February 1996). "Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli". J. Bacteriol. 178 (3): 753–67. doi:10.1128/jb.178.3.753-767.1996. PMC   177722 . PMID   8550510.
  5. 1 2 Scott AI, Roessner CA (August 2002). "Biosynthesis of cobalamin (vitamin B(12))". Biochem. Soc. Trans. 30 (4): 613–20. doi:10.1042/bst0300613. PMID   12196148.
  6. Roessner CA, Santander PJ, Scott AI (2001). "Multiple biosynthetic pathways for vitamin B12: variations on a central theme". Cofactor Biosynthesis. Vitamins & Hormones. Vol. 61. pp. 267–97. doi:10.1016/s0083-6729(01)61009-4. ISBN   9780127098616. PMID   11153269.{{cite book}}: |journal= ignored (help)

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR003200