Oxyselenide

Last updated
Figure 1: Crystal structure of the BiCuSeO with a layered ZrSiCuAs structure Crystal structure of the BiCuSeO with a layered ZrSiCuAs structure.png
Figure 1: Crystal structure of the BiCuSeO with a layered ZrSiCuAs structure

Oxyselenides are a group of chemical compounds that contain oxygen and selenium atoms (Figure 1). Oxyselenides can form a wide range of structures in compounds containing various transition metals, and thus can exhibit a wide range of properties. Most importantly, oxyselenides have a wide range of thermal conductivity, which can be controlled with changes in temperature in order to adjust their thermoelectric performance. Current research on oxyselenides indicates their potential for significant application in electronic materials. [1]

Contents

Synthesis

The first oxyselenide to be crystallized was manganese oxyselenide in 1900. [2] In 1910, oxyselenides containing phosphate were created by treating P2Se5 with metal hydroxides. [3] Uranium oxyselenide was formed next by treating H2Se with uranium dioxides at 1000 °C. [4] This technique was also utilized in synthesizing oxyselenides of rare-earth elements in the mid-1900s. [5] Synthesis of oxyselenide compounds currently involves treating oxides with aluminum powder and selenium at high temperatures. [6]

Figure 2: Some recently discovered oxyselenide structures crystallize in such a way that the metal oxide layers (a) and the metal selenide layers (b) form an alternating pattern (c). Color code: yellow - strontium; pink - cobalt; blue - oxygen; green - selenium; orange - copper Recently Discovered Oxyselenide Structures.png
Figure 2: Some recently discovered oxyselenide structures crystallize in such a way that the metal oxide layers (a) and the metal selenide layers (b) form an alternating pattern (c). Color code: yellow − strontium; pink − cobalt; blue − oxygen; green − selenium; orange − copper

Recent discoveries in iron oxyarsenides and their superconductivity have highlighted the importance of mixed anion systems. [7] Mixed copper oxychalcogenides came about when the electronic properties of both chalcogenides and oxides were taken into account. Chemists began pursuing the synthesis of a compound with metallic and charge density wave properties as well as high temperature superconductivity. Upon synthesizing the copper oxyselenide Na1.9Cu2Se2·Cu2O by reacting Na2Se3.6 with Cu2O, [8] they concluded that a new type of oxychalcogenides could be synthesized by reacting metal oxides with polychalcogenide fluxes.

Derivatives

Figure 3: Orthorhombic structure of b-La2O2MnSe2 at low temperatures. Beta oxyselenide.png
Figure 3: Orthorhombic structure of β-La2O2MnSe2 at low temperatures.

New oxyselenides of the formula Sr2AO2M2Se2 (A=Co, Mn; M=Cu, Ag) have been synthesized. They crystallize into structures consisting of alternating perovskite-like (metal oxide) and antifluorite (metal selenide) layers (Figure 2). The optical band gap of each oxyselenide is very narrow, indicating semiconductivity. [9]

Another derivative that reveals oxyselenide properties is β-La2O2MSe2 (M= Fe, Mn). This molecule possesses an orthorhombic structure (Figure 3), opening up the possibilities for different packing arrangements of oxyselenides. They are ferromagnetic at low temperatures (~27 K) and show high resistivity at room temperature. The Mn analogue, diluted in NaCl solution, suggests an optical band gap of 1.6 eV at room temperature, making it an insulator. Meanwhile, the band gap for the Fe analogue is approximately 0.7 eV between 150 K and 300 K, making it a semiconductor. [7] In contrast, cobalt oxyselenide La2Co2O3Se2 is antiferromagnetically ordered, suggesting that although the different transition metals are responsible for the changes in an oxyselenide's magnetic property, the molecule's overall lattice structure may also influence its conductivity. [10]

Figure 4: Comparison of figure-of-merit ZT compounds Bi1-xMxCuSeO. Higher ZTs indicate more efficient energy conversions. Comparison of figure-of-merit ZT compounds Bi1-xMxCuSeO..png
Figure 4: Comparison of figure-of-merit ZT compounds Bi1-xMxCuSeO. Higher ZTs indicate more efficient energy conversions.

The magnetic and conducting properties of different metal compounds coordinated with oxyselenide are not only affected by the transition metal used, but also by the synthesis conditions. For example, the percentage of aluminium used during the synthesis of Ce2O2ZnSe2 as an oxygen retriever affected the band gaps, indicated by the varying product colours. [6] Various structures allow for many potential configurations. For example, as observed before in La2Co2O3Se2, Sr2F2Mn2Se2O exhibits a frustrated magnetic correlation in the structure resulting in an antiferromagnetic lattice. [11]

In 2010, p-type polycrystalline BiCuSeO oxyselenides were reported as possible thermoelectric materials. [12] The weak bonds between the [Cu2Se2]−2 conducting and [Bi2O2]+2 insulating layer, as well as the anharmonic crystal lattice structure, may account for the substance's low thermal conductivity and high thermoelectric performance. Recently, BiCuSeO's ZT value, a dimensionless figure-of-merit indicating thermoelectric performance, has been increased from 0.5 to 1.4. Experiment has shown that Ca doping can improve electrical conductivity, thereby increasing the ZT value. [1] Additionally, replacing 15% of the Bi3+ ions with group 2 metal ions, Ca2+, Sr2+, or Ba2+ (Figure 4), also optimizes the charge carrier concentration. [12]

Related Research Articles

High-temperature superconductivity Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductors are operatively defined as materials that behave as superconductors at temperatures above 77 K, the boiling point of liquid nitrogen, one of the simplest coolants in cryogenics. All materials currently known to superconduct at ordinary pressures become superconducting at temperatures far below ambient, and therefore require cooling. The majority of high-temperature superconductors are ceramic materials. On the other hand, Metallic superconductors usually work below −200 °C: they are then called low-temperature superconductors. Metallic superconductors are also ordinary superconductors, since they were discovered and used before the high-temperature ones.

Thermoelectric materials Materials whose temperature variance leads to voltage change

Thermoelectric materials show the thermoelectric effect in a strong or convenient form.

Covellite

Covellite is a rare copper sulfide mineral with the formula CuS. This indigo blue mineral is commonly a secondary mineral in limited abundance and although it is not an important ore of copper itself, it is well known to mineral collectors.

Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers, practical magnetic semiconductors would also allow control of quantum spin state. This would theoretically provide near-total spin polarization, which is an important property for spintronics applications, e.g. spin transistors.

Heusler compound

Heusler compounds are magnetic intermetallics with face-centered cubic crystal structure and a composition of XYZ (half-Heuslers) or X2YZ (full-Heuslers), where X and Y are transition metals and Z is in the p-block. Many of these compounds exhibit properties relevant to spintronics, such as magnetoresistance, variations of the Hall effect, ferro-, antiferro-, and ferrimagnetism, half- and semimetallicity, semiconductivity with spin filter ability, superconductivity, and topological band structure. Their magnetism results from a double-exchange mechanism between neighboring magnetic ions. Manganese, which sits at the body centers of the cubic structure, was the magnetic ion in the first Heusler compound discovered. (See the Bethe–Slater curve for details of why this happens.)

In chemistry, hypomanganate, also called manganate(V) or tetraoxidomanganate(3−), is a trivalent anion composed of manganese and oxygen, with formula MnO3−
4
.

Tin selenide

Tin selenide, also known as stannous selenide, is an inorganic compound with the formula SnSe. Tin(II) selenide is a typical layered metal chalcogenide as it includes a group 16 anion (Se2−) and an electropositive element (Sn2+), and is arranged in a layered structure. Tin(II) selenide is a narrow band-gap (IV-VI) semiconductor structurally analogous to black phosphorus. It has received considerable interest for applications including low-cost photovoltaics, and memory-switching devices.

Uranium nitride

Uranium nitride is any of a family of several ceramic materials: uranium mononitride (UN), uranium sesquinitride (U2N3) and uranium dinitride (UN2). The word nitride refers to the −3 oxidation state of the nitrogen bound to the uranium.

Lithium iron phosphate

Lithium iron phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, and solar energy installations. It is also used in OLPC XO education laptops.

Cuprate superconductors are a family of high-temperature superconducting materials made of layers of copper oxides (CuO2) alternating with layers of other metal oxides, which act as charge reservoirs. At ambient pressure, cuprate superconductors are the highest temperature superconductors known. However, the mechanism by which superconductivity occurs is still not understood.

Organomanganese chemistry is the chemistry of organometallic compounds containing a carbon to manganese chemical bond. In a 2009 review, Cahiez et al. argued that as manganese is cheap and benign, organomanganese compounds have potential as chemical reagents, although currently they are not widely used as such despite extensive research. A key disadvantage of organomanganese compounds is that they can be obtained directly from the metal only with difficulty.

MAX phases

The MAX phases are layered, hexagonal carbides and nitrides which have the general formula: Mn+1AXn, (MAX) where n = 1 to 4, and M is an early transition metal, A is an A-group (mostly IIIA and IVA, or groups 13 and 14) element and X is either carbon and/or nitrogen. The layered structure consists of edge-sharing, distorted XM6 octahedra interleaved by single planar layers of the A-group element.

Binary compounds of silicon

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element. Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas on research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

Antiperovskites is a type of crystal structure similar to the perovskite structure that is common in nature. The key difference is that the positions of the cation and anion constituents are reversed in the unit cell structure. In contrast to perovskite, antiperovskite compounds consist of two types of anions coordinated with one type of cation. Antiperovskite compounds are an important class of materials because they exhibit interesting and useful physical properties not found in perovskite materials.

Mas Subramanian

Munirpallam Appadorai "Mas" Subramanian, often known also as M. A. Subramanian or Munirpallam Subramanian, is a solid-state chemist at Oregon State University in Corvallis, Oregon, and currently holds both the titles of Distinguished Professor and Milton Harris Chair of Materials Science in the Department of Chemistry. His work in solid-state chemistry on structure-property relationships of inorganic compounds has led to the discovery of several novel functional materials, many of which have found usage in various applications. Subramanian has authored 360 research publications and holds 60 patents. His publications have received more than 28,000 citations.

Sodium cobalt oxide, also called sodium cobaltate, is any of a range of compounds of sodium, cobalt, and oxygen with the general formula Na
x
CoO
2
for 0 < x ≤ 1. The name is also used for hydrated forms of those compounds, Na
x
CoO
2
·yH
2
O
.

Nickel manganese oxides, or nickel manganates, are spinel structure compounds of Nickel, Manganese and Oxygen of the form: Ni(x)Mn(3-x)O(y)

Mixed anion compounds, heteroanionic materials or mixed anion materials are chemical compounds containing cations and more than one kind of anion. The compounds contain a single phase, rather than just a mixture.

The telluride oxides or oxytellurides are double salts that contain both telluride and oxide anions. They are in the class of mixed anion compounds.

References

  1. 1 2 Pei, Yan-Ling; He, Jiaqing; Li, Jing-Feng; Li, Fu; Liu, Qijun; Pan, Wei; Barreteau, Celine; Berardan, David; Dragoe, Nita; Zhao, Li-Dong (2013). "High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO". NPG Asia Materials. 5 (5): e47. doi: 10.1038/am.2013.15 . ISSN   1884-4057.
  2. Fonzes-Diacon, H. (1990). "A synthesized selenide and an oxyselenide of manganese". Competes Rendus Hebdomadaires des Séances de l'Académie des Sciences 130: 1025: 1025–6.
  3. Ephraim, F., and E. Majler. (1910). "Selenophosphates". Berichte der Deutschen Chemischen Gesellschaft 43: 277–285.
  4. Khodadad, P. (1957) "Uranium Oxyselenide. UOSe". Compt. Rend. 245: 226: 2286–8.
  5. Guittard, M., Flahaut, J., and Domange, L. "The oxyselenide of Yttrium and all the rare earths". Acta Crystallographica 21 (5).
  6. 1 2 Ainsworth, Chris M.; Wang, Chun-Hai; Tucker, Matthew G.; Evans, John S. O. (2015). "Synthesis, Structural Characterization, and Physical Properties of the New Transition Metal Oxyselenide Ce2O2ZnSe2" (PDF). Inorganic Chemistry. 54 (4): 1563–1571. doi:10.1021/ic502551n. ISSN   0020-1669. PMID   25584771.
  7. 1 2 McCabe, Emma E.; Free, David G.; Mendis, Budhika G.; Higgins, Joshua S.; Evans, John S. O. (2010). "Preparation, Characterization, and Structural Phase Transitions in a New Family of Semiconducting Transition Metal Oxychalcogenides β-La2O2MSe2 (M = Mn, Fe)". Chemistry of Materials. 22 (22): 6171–6182. doi:10.1021/cm1023103. ISSN   0897-4756.
  8. Park, Younbong; DeGroot, Don C.; Schindler, Jon L.; Kannewurf, Carl R.; Kanatzidis, Mercouri G. (1993). "Intergrowth of two different layered networks in the metallic copper oxyselenide Na1.9Cu2Se2⋅Cu2O". Chemistry of Materials. 5 (1): 8–10. doi:10.1021/cm00025a004. ISSN   0897-4756.
  9. Jin, Shifeng; Chen, Xiaolong; Guo, Jiangang; Lei, Ming; Lin, Jingjing; Xi, Jianguo; Wang, Wenjun; Wang, Wanyan (2012). "Sr2Mn3Sb2O2Type Oxyselenides: Structures, Magnetism, and Electronic Properties of Sr2AO2M2Se2(A=Co, Mn;M=Cu, Ag)". Inorganic Chemistry. 51 (19): 10185–10192. doi:10.1021/ic301022g. ISSN   0020-1669.
  10. Fuwa, Yayoi; Endo, Takashi; Wakeshima, Makoto; Hinatsu, Yukio; Ohoyama, Kenji (2010). "Orthogonal Spin Arrangement in Quasi-Two-Dimensional La2Co2O3Se2". Journal of the American Chemical Society. 132 (51): 18020–18022. doi:10.1021/ja109007g. ISSN   0002-7863.
  11. Liu, Y.; Zhang, S.B.; Li, L.J.; Lu, W.J.; Zhao, B.C.; Tong, P.; Song, W.H.; Lin, S.; Huang, Y.N.; Huang, Z.H.; Tan, S.G.; Sun, Y.P. (2013). "Synthesis, structure and properties of the new layered manganese oxyselenide Sr2F2Mn2Se2O". Journal of Alloys and Compounds. 580: 211–216. doi:10.1016/j.jallcom.2013.05.048. ISSN   0925-8388.
  12. 1 2 Zhao, Li-Dong; He, Jiaqing; Berardan, David; et al. (2014). "BiCuSeO oxyselenides: new promising thermoelectric materials". Energy & Environmental Science. 7 (9): 2900. doi:10.1039/C4EE00997E. ISSN   1754-5692.