Roseburia

Last updated

Roseburia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Clostridia
Order: Eubacteriales
Family: Lachnospiraceae
Genus: Roseburia
Duncan et al. 2006
Type species
Roseburia cecicola [1]
Species

Roseburia cecicola [1]
Roseburia faecis [1]
Roseburia hominis [1]
Roseburia intestinalis [1]
Roseburia inulinivorans [1]

Roseburia is a genus of butyrate-producing, Gram-positive anaerobic bacteria that inhabit the human colon. Named in honor of Theodor Rosebury, they are members of the phylum Bacillota (formerly known as Firmicutes). [2] [3]

Increased abundance of Roseburia is associated with weight loss and reduced glucose intolerance in mice. [4]

Related Research Articles

<span class="mw-page-title-main">Bacteriocin</span> Class of bacterially produced peptide antibiotics

Bacteriocins are proteinaceous or peptidic toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strain(s). They are similar to yeast and paramecium killing factors, and are structurally, functionally, and ecologically diverse. Applications of bacteriocins are being tested to assess their application as narrow-spectrum antibiotics.

<span class="mw-page-title-main">Bacillota</span> Phylum of bacteria

The Bacillota are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earlier names of long standing in the literature.

<span class="mw-page-title-main">Actinomycetota</span> Phylum of bacteria

The Actinomycetota are a diverse phylum of Gram-positive bacteria with high G+C content. They can be terrestrial or aquatic. They are of great economic importance to humans because agriculture and forests depend on their contributions to soil systems. In soil they help to decompose the organic matter of dead organisms so the molecules can be taken up anew by plants. While this role is also played by fungi, Actinomycetota are much smaller and likely do not occupy the same ecological niche. In this role the colonies often grow extensive mycelia, like a fungus would, and the name of an important order of the phylum, Actinomycetales, reflects that they were long believed to be fungi. Some soil actinomycetota live symbiotically with the plants whose roots pervade the soil, fixing nitrogen for the plants in exchange for access to some of the plant's saccharides. Other species, such as many members of the genus Mycobacterium, are important pathogens.

<span class="mw-page-title-main">Butyric acid</span> Chemical compound

Butyric acid, also known under the systematic name butanoic acid, is a straight-chain alkyl carboxylic acid with the chemical formula CH3CH2CH2CO2H. It is an oily, colorless liquid with an unpleasant odor. Isobutyric acid is an isomer. Salts and esters of butyric acid are known as butyrates or butanoates. The acid does not occur widely in nature, but its esters are widespread. It is a common industrial chemical and an important component in the mammalian gut.

<span class="mw-page-title-main">Sphingomonadaceae</span> Family of bacteria

Sphingomonadaceae are a gram-negative bacterial family of the Alphaproteobacteria. An important feature is the presence of sphingolipids in the outer membrane of the cell wall. The cells are ovoid or rod-shaped. Others are also pleomorphic, i.e. the cells change the shape over time. Some species from Sphingomonadaceae family are dominant components of biofilms.

<span class="mw-page-title-main">Gut microbiota</span> Community of microorganisms in the gut

Gut microbiota, gut microbiome, or gut flora, are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.

<span class="mw-page-title-main">Microbiota</span> Community of microorganisms

Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.

Faecalibacterium is a genus of bacteria. The genus contains several species including Faecalibacterium prausnitzii, Faecalibacterium butyricigenerans, Faecalibacterium longum, Faecalibacterium duncaniae, Faecalibacterium hattorii, and Faecalibacterium gallinarum. Its first known species, Faecalibacterium prausnitzii is gram-positive, mesophilic, rod-shaped, and anaerobic, and is one of the most abundant and important commensal bacteria of the human gut microbiota. It is non-spore forming and non-motile. These bacteria produce butyrate and other short-chain fatty acids through the fermentation of dietary fiber. The production of butyrate makes them an important member of the gut microbiota, fighting against inflammation.

Butyrivibrio is a genus of bacteria in Class Clostridia. Bacteria of this genus are common in the gastrointestinal systems of many animals. Genus Butyrivibrio was first described by Bryant and Small (1956) as anaerobic, butyric acid-producing, curved rods. Butyrivibrio cells are small, typically 0.4 – 0.6 µm by 2 – 5 µm. They are motile, using a single polar or subpolar monotrichous flagellum. They are commonly found singly or in short chains but it is not unusual for them to form long chains. Despite historically being described as Gram-negative, their cell walls contain derivatives of teichoic acid, and electron microscopy indicates that bacteria of this genus have a Gram-positive cell wall type. It is thought that they appear Gram-negative when Gram stained because their cell walls thin to 12 to 18 nm as they reach stationary phase.

<span class="mw-page-title-main">Bacterial phyla</span> Phyla or divisions of the domain Bacteria

Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.

<span class="mw-page-title-main">Zetaproteobacteria</span> Class of bacteria

The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single described species, Mariprofundus ferrooxydans, which is an iron-oxidizing neutrophilic chemolithoautotroph originally isolated from Kamaʻehuakanaloa Seamount in 1996 (post-eruption). Molecular cloning techniques focusing on the small subunit ribosomal RNA gene have also been used to identify a more diverse majority of the Zetaproteobacteria that have as yet been unculturable.

Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.

The Negativicutes are a class of bacteria in the phylum Bacillota, whose members have a peculiar cell wall with a lipopolysaccharide outer membrane which stains gram-negative, unlike most other members of the Bacillota. Although several neighbouring Clostridia species also stain gram-negative, the proteins responsible for the unusual diderm structure of the Negativicutes may have actually been laterally acquired from Pseudomonadota. Additional research is required to confirm the origin of the diderm cell envelope in the Negativicutes.

<span class="mw-page-title-main">'The All-Species Living Tree' Project</span>

'The All-Species Living Tree' Project is a collaboration between various academic groups/institutes, such as ARB, SILVA rRNA database project, and LPSN, with the aim of assembling a database of 16S rRNA sequences of all validly published species of Bacteria and Archaea. At one stage, 23S sequences were also collected, but this has since stopped.

Lactobacillus gasseri is a species in the genus Lactobacillus identified in 1980 by François Gasser and his associates. It is part of the vaginal flora. Its genome has been sequenced. L. gasseri is a normal inhabitant of the lower reproductive tract in healthy women. It also produces Lactocillin.

Roseburia intestinalis is a saccharolytic, butyrate-producing bacterium first isolated from human faeces. It is anaerobic, gram-positive, non-sporeforming, slightly curved rod-shaped and motile by means of multiple subterminal flagella. L1-82T is the type strain.

Roseburia inulinivorans is a bacterium first isolated from human faeces. It is anaerobic, Gram-positive or Gram-variable, slightly curved rod-shaped and motile. The cells range in size from 0.5-1.5 to 5.0 micrometres. A2-194(T) is the type strain.

Butyrivibrio hungatei is a species of Gram-negative, anaerobic, non-spore-forming, butyrate-producing bacteria. It is curved rod-shaped and motile by means of single polar or subpolar flagellum and is common in the rumen. Its type strain is JK 615T.

Peptoniphilus is a genus of bacteria in the phylum Bacillota (Bacteria).

The Lachnospiraceae are a family of obligately anaerobic, variably spore-forming bacteria in the order Eubacteriales that ferment diverse plant polysaccharides to short-chain fatty acids and alcohols (ethanol). These bacteria are among the most abundant taxa in the rumen and the human gut microbiota. Members of this family may protect against colon cancer in humans by producing butyric acid. Lachnospiraceae have been found to contribute to diabetes in genetically susceptible (ob/ob) germ-free mice.

References

  1. 1 2 3 4 5 6 LPSN lpsn.dsmz.de
  2. Scott, K. P.; Martin, J. C.; Mrazek, J.; Flint, H. J. (2 May 2008). "Transfer of Conjugative Elements from Rumen and Human Firmicutes Bacteria to Roseburia inulinivorans". Applied and Environmental Microbiology. 74 (12): 3915–3917. Bibcode:2008ApEnM..74.3915S. doi:10.1128/AEM.02807-07. PMC   2446557 . PMID   18456856.
  3. Machiels, K; Joossens, M; Sabino, J; De Preter, V; Arijs, I; Eeckhaut, V; Ballet, V; Claes, K; Van Immerseel, F; Verbeke, K; Ferrante, M; Verhaegen, J; Rutgeerts, P; Vermeire, S (August 2014). "A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis". Gut. 63 (8): 1275–83. doi:10.1136/gutjnl-2013-304833. PMID   24021287. S2CID   32963595.
  4. Ryan, KK; Tremaroli, V; Clemmensen, C; Kovatcheva-Datchary, P; Myronovych, A; Karns, R; Wilson-Pérez, HE; Sandoval, DA; Kohli, R; Bäckhed, F; Seeley, RJ (2014). "FXR is a molecular target for the effects of vertical sleeve gastrectomy". Nature. 509 (7499): 183–8. Bibcode:2014Natur.509..183R. doi:10.1038/nature13135. PMC   4016120 . PMID   24670636.