2,3-bisphosphoglycerate 3-phosphatase

Last updated
2,3-bisphosphoglycerate 3-phosphatase
Identifiers
EC no. 3.1.3.80
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

2,3-Bisphosphoglycerate 3-phosphatase (EC 3.1.3.80, MIPP1, 2,3-BPG 3-phosphatase) is an enzyme with systematic name 2,3-bisphospho-D-glycerate 3-phosphohydrolase. [1] This enzyme catalyses the following reaction:

2,3-bisphospho-D-glycerate + H2O 2-phospho-D-glycerate + phosphate

This reaction is a shortcut in the Luebering-Rapoport pathway.

Related Research Articles

<span class="mw-page-title-main">Pyruvate kinase deficiency</span> Medical condition

Pyruvate kinase deficiency is an inherited metabolic disorder of the enzyme pyruvate kinase which affects the survival of red blood cells. Both autosomal dominant and recessive inheritance have been observed with the disorder; classically, and more commonly, the inheritance is autosomal recessive. Pyruvate kinase deficiency is the second most common cause of enzyme-deficient hemolytic anemia, following G6PD deficiency.

<span class="mw-page-title-main">Glyceraldehyde 3-phosphate</span> Chemical compound

Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms. With the chemical formula H(O)CCH(OH)CH2OPO32-, this anion is a monophosphate ester of glyceraldehyde.

<span class="mw-page-title-main">Samuel Mitja Rapoport</span> American biochemist (1912–2004)

Samuel Mitja Rapoport was a Russian Empire-born German university professor of biochemistry in East Germany. Of Jewish descent and a committed communist, he fled Austria after its annexation by Nazi Germany, and moved to the United States. In 1950, as a result of an investigation of un-American activities, he was offered a professorship in East Berlin. He was married to the renowned pediatrician Ingeborg Rapoport.

<span class="mw-page-title-main">3-Phosphoglyceric acid</span> Chemical compound

3-Phosphoglyceric acid (3PG, 3-PGA, or PGA) is the conjugate acid of 3-phosphoglycerate or glycerate 3-phosphate (GP or G3P). This glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin-Benson cycle. The anion is often termed as PGA when referring to the Calvin-Benson cycle. In the Calvin-Benson cycle, 3-phosphoglycerate is typically the product of the spontaneous scission of an unstable 6-carbon intermediate formed upon CO2 fixation. Thus, two equivalents of 3-phosphoglycerate are produced for each molecule of CO2 that is fixed. In glycolysis, 3-phosphoglycerate is an intermediate following the dephosphorylation (reduction) of 1,3-bisphosphoglycerate.

<span class="mw-page-title-main">1,3-Bisphosphoglyceric acid</span> Chemical compound

1,3-Bisphosphoglyceric acid (1,3-Bisphosphoglycerate or 1,3BPG) is a 3-carbon organic molecule present in most, if not all, living organisms. It primarily exists as a metabolic intermediate in both glycolysis during respiration and the Calvin cycle during photosynthesis. 1,3BPG is a transitional stage between glycerate 3-phosphate and glyceraldehyde 3-phosphate during the fixation/reduction of CO2. 1,3BPG is also a precursor to 2,3-bisphosphoglycerate which in turn is a reaction intermediate in the glycolytic pathway.

<span class="mw-page-title-main">2,3-Bisphosphoglyceric acid</span> Chemical compound

2,3-Bisphosphoglyceric acid (2,3-BPG), also known as 2,3-diphosphoglyceric acid (2,3-DPG), is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglyceric acid (1,3-BPG).

<span class="mw-page-title-main">Bisphosphoglycerate mutase</span> Enzyme

Bisphosphoglycerate mutase is an enzyme expressed in erythrocytes and placental cells. It is responsible for the catalytic synthesis of 2,3-Bisphosphoglycerate (2,3-BPG) from 1,3-bisphosphoglycerate. BPGM also has a mutase and a phosphatase function, but these are much less active, in contrast to its glycolytic cousin, phosphoglycerate mutase (PGM), which favors these two functions, but can also catalyze the synthesis of 2,3-BPG to a lesser extent.

<span class="mw-page-title-main">Phosphoglycerate mutase</span> Class of enzymes

Phosphoglycerate mutase (PGM) is any enzyme that catalyzes step 8 of glycolysis - the internal transfer of a phosphate group from C-3 to C-2 which results in the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG) through a 2,3-bisphosphoglycerate intermediate. These enzymes are categorized into the two distinct classes of either cofactor-dependent (dPGM) or cofactor-independent (iPGM). The dPGM enzyme is composed of approximately 250 amino acids and is found in all vertebrates as well as in some invertebrates, fungi, and bacteria. The iPGM class is found in all plants and algae as well as in some invertebrate, fungi, and Gram-positive bacteria. This class of PGM enzyme shares the same superfamily as alkaline phosphatase.

The enzyme 3-phosphoglycerate phosphatase (EC 3.1.3.38) catalyzes the reaction

The enzyme ADP-phosphoglycerate phosphatase (EC 3.1.3.28) catalyzes the reaction

<span class="mw-page-title-main">Bisphosphoglycerate phosphatase</span>

In enzymology, a bisphosphoglycerate phosphatase (EC 3.1.3.13) is an enzyme that catalyzes the chemical reaction

The enzyme mannosyl-3-phosphoglycerate phosphatase (EC 3.1.3.70) catalyzes the reaction

The enzyme methylphosphothioglycerate phosphatase (EC 3.1.3.14) catalyzes the reaction

The enzyme phosphoglycerate phosphatase (EC 3.1.3.20) catalyzes the reaction

<span class="mw-page-title-main">Phosphoglycolate phosphatase</span>

Phosphoglycolate phosphatase(EC 3.1.3.18; systematic name 2-phosphoglycolate phosphohydrolase), also commonly referred to as phosphoglycolate hydrolase, 2-phosphoglycolate phosphatase, P-glycolate phosphatase, and phosphoglycollate phosphatase, is an enzyme responsible for catalyzing the conversion of 2-phosphoglycolate into glycolate and phosphate:

Bisphosphoglycerate may refer to:

Mannosylglycerate synthase is an enzyme with systematic name GDP-mannose:D-glycerate 2-alpha-D-mannosyltransferase. This enzyme catalyses the following chemical reaction

Glucosyl-3-phosphoglycerate phosphatase (EC 3.1.3.85, GpgP protein) is an enzyme with systematic name α-D-glucosyl-3-phospho-D-glycerate phosphohydrolase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Luebering–Rapoport pathway</span>

In biochemistry, the Luebering–Rapoport pathway is a metabolic pathway in mature erythrocytes involving the formation of 2,3-bisphosphoglycerate (2,3-BPG), which regulates oxygen release from hemoglobin and delivery to tissues. 2,3-BPG, the reaction product of the Luebering–Rapoport pathway was first described and isolated in 1925 by the Austrian biochemist Samuel Mitja Rapoport and his technical assistant Jane Luebering.

<span class="mw-page-title-main">2-Phosphoglycolate</span> Chemical compound

2-Phosphoglycolate (chemical formula C2H2O6P3-; also known as phosphoglycolate, 2-PG, or PG) is a natural metabolic product of the oxygenase reaction mediated by the enzyme ribulose 1,5-bisphosphate carboxylase (RuBisCo).

References

  1. Cho J, King JS, Qian X, Harwood AJ, Shears SB (April 2008). "Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt". Proceedings of the National Academy of Sciences of the United States of America. 105 (16): 5998–6003. Bibcode:2008PNAS..105.5998C. doi: 10.1073/pnas.0710980105 . PMC   2329705 . PMID   18413611.