Acid sphingomyelinase

Last updated

Acid sphingomyelinase is one of the enzymes that make up the sphingomyelinase (SMase) family, responsible for catalyzing the breakdown of sphingomyelin to ceramide and phosphorylcholine. [1] They are organized into alkaline, neutral, and acidic SMase depending on the pH in which their enzymatic activity is optimal. Acid sphingomyelinases' (aSMases) enzymatic activity can be influenced by drugs, lipids, cations, pH, redox and other proteins in the environment. [2] [3] [4] Specifically aSMases have been shown to have increased enzymatic activity in lysobisphosphatidic acid (LBPA) or phosphatidylinositol (PI) enriched environments, and inhibited activity when phosphorylated derivatives of PI are present. [4]

Contents

Sphingomyelin phosphodiesterase 1 (SMPD1) is the gene that codes for two aSMase enzymes distinct in the pools of sphingomyelin they hydrolyse. [4] Lysosomal sphingomyelinase (L-SMase) is found in the lysosomal compartment, and the secretory sphingomyelinase (S-SMase) is found extracellularly.

Structure and catalytic mechanism

The catalytic mechanism of acid sphingomyelinase is the hydrolysis of sphingomyelin to ceramide and phosphorylcholine.

Types of acid sphingomyelinases

Lysosomal acid sphingomyelinase

The lysosomal acidic SMase is considered one of the major candidates for the production of ceramide in the cellular response to stress; including environmental insults, infection with pathogens, ligation of death receptors, and chemotherapy drugs. [4] The main mechanism of trafficking L-SMase to the lysosome is through the mannose 6-phosphate receptor mediated pathway. L-SMase acquires zinc whilst being trafficked to the lysosome, and it is thought that zinc may play a role in mediating cellular L-SMase activity.

Secreted acid sphingomyelinase

Secreted acid SMases are less well understood than their lysosomal compartmentalised counterpart. S-SMases are zinc-dependent, and have been implicated in the metabolism of lipoprotein-bound SM to Ceramide and the aggregation of LDL particles. [4] In circulating platelets there is no neutral SMase activity, but they do have S-SMase enzymatic activity. It has been shown that in response to thrombin induced platelet activation, S-SMase is released extracellulary and a parallel decrease in intracellular L-SMase is observed.

Role in disease

Niemann–Pick type A and type B

The lysosomal storage disorders Niemann-Pick disease, SMPD1-associated (type A and B) are characterized by deficiencies in acid sphingomyelinase. [3] Diagnosis is confirmed by an aSMase activity less than 10% in the peripheral blood lymphocytes.[ citation needed ] Caused by a mutation in the SMPD1 gene, it is found in 1:250,000 in the population. Mutations to this gene are more commonly found in those of Ashkenazi Jewish descent (1:80-1:100) or of North African descent.

Niemann–Pick type C

Niemann–Pick disease, type C (NPC) is also a lysosomal storage disorder, but instead is caused by a mutation in either the NPC1 or NPC2 gene. Despite having a functional SMPD1 gene, NPC fibroblasts were shown to have inhibited aSMase activity. The functional loss of aSMase activity may also be due to altered trafficking (causing accumulation of cholesterol) or by direct action on the enzyme. [4] Additionally, the disregulation of BMP/LBPA in NPC may contribute to the decreased aSMase activity, as LBPA has been shown to enhance enzymatic activity. [5]

Cardiovascular pathophysiological conditions

Atherosclerosis occurs from the thickening of the artery walls through depositing of cholesterol and triglyceride on the cell walls. Lipid deposits are encouraged by high levels of circulating LDL, often caused by inadequate removal by HDL particles. Acid SMase has been shown to accelerate atherosclerotic lesion progression through promoting aggregation of lipoproteins to arterial walls. [1] Inhibition of aSMases is a current therapeutic target for the treatment of atherosclerosis. [4]

Diabetes

Secreted aSMase may also play a role in diabetes. Inflammation-induced S-SMase activation may contribute to insulin resistance through the increased generation of ceramide. [6]

COVID-19

The SARS-CoV-2 virus is thought to activate acid sphingomyelinase as part of cell entry. [7] Functional inhibitors of acid sphingomyelinase or FIASMAs have been shown to have anti-viral and anti-inflammatory properties. [8]

Related Research Articles

<span class="mw-page-title-main">Lysosome</span> Cell membrane organelle

A lysosome is a single membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that digest many kinds of biomolecules. A lysosome has a specific composition, of both its membrane proteins and its lumenal proteins. The lumen's pH (~4.5–5.0) is optimal for the enzymes involved in hydrolysis, analogous to the activity of the stomach. Besides degradation of polymers, the lysosome is involved in cell processes of secretion, plasma membrane repair, apoptosis, cell signaling, and energy metabolism.

<span class="mw-page-title-main">Lysosomal storage disease</span> Medical condition

Lysosomal storage diseases are a group of over 70 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective due to a mutation, the large molecules accumulate within the cell, eventually killing it.

<span class="mw-page-title-main">Niemann–Pick disease</span> Medical condition

Niemann–Pick disease (NP), also known as acid sphingomyelinase deficiency, is a group of rare genetic diseases of varying severity. These are inherited metabolic disorders in which sphingomyelin accumulates in lysosomes in cells of many organs. NP types A, A/B, and B are caused by mutations in the SMPD1 gene, which causes a deficiency of an acid sphingomyelinase (ASM). NP type C is now considered a separate disease, as SMPD1 is not involved, and there is no deficiency in ASM.

<span class="mw-page-title-main">Sphingolipid</span> Family of chemical compounds

Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play important roles in signal transduction and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with a terminal hydroxyl group is a ceramide. Other common groups bonded to the terminal oxygen atom include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids.

<span class="mw-page-title-main">Sphingomyelin</span> Class of chemical compounds

Sphingomyelin is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a phosphoethanolamine head group; therefore, sphingomyelins can also be classified as sphingophospholipids. In humans, SPH represents ~85% of all sphingolipids, and typically make up 10–20 mol % of plasma membrane lipids.

<span class="mw-page-title-main">LDL receptor</span> Mammalian protein found in Homo sapiens

The low-density lipoprotein receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich low-density lipoprotein (LDL). It is a cell-surface receptor that recognizes apolipoprotein B100 (ApoB100), which is embedded in the outer phospholipid layer of very low-density lipoprotein (VLDL), their remnants—i.e. intermediate-density lipoprotein (IDL), and LDL particles. The receptor also recognizes apolipoprotein E (ApoE) which is found in chylomicron remnants and IDL. In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

<span class="mw-page-title-main">Ceramide</span> Family of waxy lipid molecules

Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid joined by an amide bond. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

Farber disease is an extremely rare, progressive, autosomal recessive lysosomal storage disease caused by a deficiency of the acid ceramidase enzyme. Acid ceramidase is responsible for breaking down ceramide into sphingosine and fatty acid. When the enzyme is deficient, this leads to an accumulation of fatty material in the lysosomes of the cells, leading to the signs and symptoms of this disorder.

<span class="mw-page-title-main">Glucocerebrosidase</span> Mammalian protein found in humans

β-Glucocerebrosidase is an enzyme with glucosylceramidase activity that cleaves by hydrolysis the β-glycosidic linkage of the chemical glucocerebroside, an intermediate in glycolipid metabolism that is abundant in cell membranes. It is localized in the lysosome, where it remains associated with the lysosomal membrane. β-Glucocerebrosidase is 497 amino acids in length and has a molecular mass of 59,700 Da.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

<span class="mw-page-title-main">Sphingomyelin phosphodiesterase</span> Class of enzymes

Sphingomyelin phosphodiesterase is a hydrolase enzyme that is involved in sphingolipid metabolism reactions. SMase is a member of the DNase I superfamily of enzymes and is responsible for breaking sphingomyelin (SM) down into phosphocholine and ceramide. The activation of SMase has been suggested as a major route for the production of ceramide in response to cellular stresses.

Acid lipase disease or deficiency is a name used to describe two related disorders of fatty acid metabolism. Acid lipase disease occurs when the enzyme lysosomal acid lipase that is needed to break down certain fats that are normally digested by the body is lacking or missing. This results in the toxic buildup of these fats in the body's cells and tissues. These fatty substances, called lipids, include waxes, oils, and cholesterol.

In enzymology, a ceramide kinase, also abbreviated as CERK, is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">Sphingomyelin phosphodiesterase 1</span> Enzyme found in humans

Sphingomyelin phosphodiesterase 1 (SMPD1), also known as acid sphingomyelinase (ASM), is an enzyme that in humans is encoded by the SMPD1 gene.

<span class="mw-page-title-main">ASAH1</span> Protein-coding gene in the species Homo sapiens

The ASAH1 gene encodes in humans the acid ceramidase enzyme.

<span class="mw-page-title-main">ENPP7</span> Protein-coding gene in the species Homo sapiens

Ectonucleotide pyrophosphatase/phosphodiesterase family member 7 also known as alkaline sphingomyelin phosphodiesterase (Alk-SMase) or intestinal alkaline sphingomyelinase is an enzyme that in humans is encoded by the ENPP7 gene.

<span class="mw-page-title-main">Niemann–Pick disease type C</span> Medical condition

Niemann–Pick type C (NPC) is a lysosomal storage disease associated with mutations in NPC1 and NPC2 genes. Niemann–Pick type C affects an estimated 1:150,000 people. Approximately 50% of cases present before 10 years of age, but manifestations may first be recognized as late as the sixth decade.

SMPD1-associated Niemann–Pick disease refers to two different types of Niemann–Pick disease, type A (NPA) and type B (NPB), which are associated with the SMPD1 gene.

<span class="mw-page-title-main">Robert J. Desnick</span> American geneticist

Robert J. Desnick is an American human geneticist whose basic and translational research accomplishments include significant discoveries in genomics, pharmacogenetics, gene therapy, personalized medicine, and the treatment of genetic diseases. His translational research has led to the development of the enzyme replacement therapy (ERT) and the chaperone therapy for Fabry disease, ERT for Niemann–Pick disease type B, and the RNA Interference Therapy for the Acute Hepatic Porphyrias.

Functional inhibitors of acid sphingomyelinase, or FIASMA, is a large group of pharmacological compounds inhibiting the enzyme acid sphingomyelinase. This enzyme is mainly located within the lysosome, where it cleaves sphingomyelin to ceramide and sphingosine, the latter of which is then phosphorylated to sphingosine-1-phosphate. These metabolites, and subsequent inhibition of the enzyme, influence the balance between cell death (apoptosis) and cell growth (proliferation). A lack of regulation of this sensitive equilibrium can lead to serious clinical consequences.

References

  1. 1 2 Schuchman, Edward H (May 2010). "Acid Sphingomyelinase, cell membranes and human disease: Lessons from Niemann-Pick disease". FEBS Letters. 584 (9): 1895–1900. Bibcode:2010FEBSL.584.1895S. doi: 10.1016/j.febslet.2009.11.083 . PMID   19944693.
  2. Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Muehle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tribal P (2006). "Identification of novel functional inhibitors of acid sphingomyelinase". PLOS ONE. 6 (8): e23852. doi: 10.1371/journal.pone.0023852 . PMC   3166082 . PMID   21909365.
  3. 1 2 McGovern, Mm; Schuchman EH (7 Dec 2006). "Acid Sphingomyelinase Deficiency". GeneReviews.
  4. 1 2 3 4 5 6 7 Jenkins, RW; Canals D; Hannun YA (21 June 2009). "Roles and Regulation of Secretory and Lysosomal Acid Sphingomyelinases". Cell Signal. 21 (6): 836–846. doi:10.1016/j.cellsig.2009.01.026. PMC   3488588 . PMID   19385042.
  5. "BIS(MONOACYLGLYCERO)PHOSPHATE structure, occurrence, and biochemistry". the AOCS Lipid Library. Archived from the original on 2013-06-06.
  6. Cowart, Ashley (2011). Sphingolipids and Metabolic Disease. Springer. pp. 71–152. ISBN   978-1-4614-0650-1.
  7. Kornhuber, Johannes; Hoertel, Nicolas; Gulbins, Erich (Oct 2021). "The acid sphingomyelinase/ceramide system in COVID-19". Molecular Psychiatry. 27 (1): 307–314. doi:10.1038/s41380-021-01309-5. ISSN   1476-5578. PMC   8488928 . PMID   34608263.
  8. Sánchez-Rico, Marina; Limosin, Frédéric; Vernet, Raphaël; Beeker, Nathanaël; Neuraz, Antoine; Blanco, Carlos; Olfson, Mark; Lemogne, Cédric; Meneton, Pierre; Daniel, Christel; Paris, Nicolas; Gramfort, Alexandre; Lemaitre, Guillaume; De La Muela, Pedro; Salamanca, Elisa (2021-12-15). "Hydroxyzine Use and Mortality in Patients Hospitalized for COVID-19: A Multicenter Observational Study". Journal of Clinical Medicine. 10 (24): 5891. doi: 10.3390/jcm10245891 . ISSN   2077-0383. PMC   8707307 . PMID   34945186.