Aspergillus deoxyribonuclease K1

Last updated
Aspergillus deoxyribonuclease K1
Identifiers
EC no. 3.1.22.2
CAS no. 264922-12-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Aspergillus deoxyribonuclease K1 (EC 3.1.22.2, Aspergillus DNase K1) is an enzyme. [1] [2] This enzyme catalyses the following chemical reaction

Endonucleolytic cleavage to nucleoside 3'-phosphates and 3'-phosphooligonucleotide end-products

This enzyme has preference for single-stranded DNA.

Related Research Articles

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

Deoxyribonuclease refers to a group of glycoprotein endonucleases which are enzymes that catalyze the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA. The role of the DNase enzyme in cells includes breaking down extracellular DNA (ecDNA) excreted by apoptosis, necrosis, and neutrophil extracellular traps (NET) of cells to help reduce inflammatory responses that otherwise are elicited. A wide variety of deoxyribonucleases are known and fall into one of two families, which differ in their substrate specificities, chemical mechanisms, and biological functions. Laboratory applications of DNase include purifying proteins when extracted from prokaryotic organisms. Additionally, DNase has been applied as a treatment for diseases that are caused by ecDNA in the blood plasma. Assays of DNase are emerging in the research field as well.

A DNase footprinting assay is a DNA footprinting technique from molecular biology/biochemistry that detects DNA-protein interaction using the fact that a protein bound to DNA will often protect that DNA from enzymatic cleavage. This makes it possible to locate a protein binding site on a particular DNA molecule. The method uses an enzyme, deoxyribonuclease, to cut the radioactively end-labeled DNA, followed by gel electrophoresis to detect the resulting cleavage pattern.

Type I site-specific deoxyribonuclease is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Deoxyribonuclease I</span> Protein-coding gene in the species Homo sapiens

Deoxyribonuclease I, is an endonuclease of the DNase family coded by the human gene DNASE1. DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides. It acts on single-stranded DNA, double-stranded DNA, and chromatin. In addition to its role as a waste-management endonuclease, it has been suggested to be one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis.

Deoxyribonuclease II is an endonuclease that hydrolyzes phosphodiester linkages of deoxyribonucleotide in native and denatured DNA, yielding products with 3'-phosphates and 5'-hydroxyl ends, which occurs as a result of single-strand cleaving mechanism. As the name implies, it functions optimally at acid pH because it is commonly found in low pH environment of lysosomes.

<span class="mw-page-title-main">Nuclease S1</span> Class of enzymes

Nuclease S1 is an endonuclease enzyme that splits single-stranded DNA (ssDNA) and RNA into oligo- or mononucleotides. This enzyme catalyses the following chemical reaction

Deoxyribonuclease IV (phage-T4-induced) is catalyzes the degradation nucleotides in DsDNA by attacking the 5'-terminal end.

In enzymology, a 24-hydroxycholesterol 7alpha-hydroxylase (EC 1.14.13.99) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phenylalanine—tRNA ligase</span>

In enzymology, a phenylalanine—tRNA ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">DNASE1L3</span> Protein-coding gene in the species Homo sapiens

Deoxyribonuclease gamma is an enzyme that in humans is encoded by the DNASE1L3 gene.

<span class="mw-page-title-main">DNASE1L1</span> Protein-coding gene in humans

Deoxyribonuclease-1-like 1 is an enzyme that in humans is encoded by the DNASE1L1 gene. It is also known as DNaseX due to its localisation on the X chromosome.

<span class="mw-page-title-main">MAP3K13</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 13 is an enzyme that in humans is encoded by the MAP3K13 gene.

Nepenthesin is an aspartic protease of plant origin that has so far been identified in the pitcher secretions of Nepenthes and in the leaves of Drosera peltata. It is similar to pepsin, but differs in that it also cleaves on either side of Asp residues and at Lys┼Arg. While more pH and temperature stable than porcine pepsin A, it is considerably less stable in urea or guanidine hydrochloride. It is the only known protein with such a stability profile.

<span class="mw-page-title-main">KLF15</span> Protein-coding gene in the species Homo sapiens

Krüppel-like factor 15 is a protein that in humans is encoded by the KLF15 gene in the Krüppel-like factor family. Its former designation KKLF stands for kidney-enriched Krüppel-like factor.

Serratia marcescens nuclease is an enzyme. This enzyme catalyses the following chemical reaction

Exodeoxyribonuclease (phage SP3-induced) (EC 3.1.11.4, phage SP3 DNase, DNA 5′-dinucleotidohydrolase, deoxyribonucleate 5′-dinucleotidase, deoxyribonucleic 5′-dinucleotidohydrolase, bacteriophage SP3 deoxyribonuclease) is an enzyme. that catalyses the following chemical reaction

<span class="mw-page-title-main">Aspergillopepsin II</span>

Aspergilloglutamic peptidase, also called aspergillopepsin II is a proteolytic enzyme. The enzyme was previously thought be an aspartic protease, but it was later shown to be a glutamic protease with a catalytic Glu residue at the active site, and was therefore renamed aspergilloglutamic peptidase.

<span class="mw-page-title-main">Deoxyribonuclease 2 beta</span> Protein-coding gene in the species Homo sapiens

Deoxyribonuclease 2 beta is a protein that in humans is encoded by the DNASE2B gene.

References

  1. Kato M, Ikeda Y (1968). "On the deoxyribonucleases, K1 and K2, isolated from mycelia of Aspergillus oryzae. I. Isolation and purification of DNases K1 and K2". J. Biochem. 64 (3): 321–8. PMID   4303413.
  2. Shishido K, Kato M, Ikeda Y (1968). "Isolation of thymidylic acid-rich fragments from double-stranded deoxyribonucleic acids". J. Biochem. 65: 479–481.