Biomass (satellite)

Last updated
Biomass
Mission type Earth observation satellite
Operator ESA
Mission duration5 years (planned)
Spacecraft properties
Bus Astrobus [1]
ManufacturerAirbus Defence and Space (UK)
Launch mass1,170 kilograms (2,580 lb)
Power1500 watts
Start of mission
Launch date2025 (planned) [2]
Rocket Vega
Launch site Kourou ELV
Contractor Arianespace
Orbital parameters
Reference system Geocentric
Regime Sun-synchronous
Altitude660 km
  EarthCARE
FLEX  

Biomass is an Earth observing satellite planned for launch by the European Space Agency (ESA) in 2025 from Kourou, French Guiana on a [2] on a Vega-C launch vehicle. [1]

Contents

The mission will provide the first comprehensive measurements of global forest biomass. The mission is meant to last for five years, monitoring at least eight growth cycles in the worlds’ forests.

Background

First announced in May 2013, when it was selected as ESA's seventh Earth Explorer, the Biomass satellite is part of ESA's Living Planet Programme, which consists of Earth observation missions. [3] [4] Its initial launch date was set to 2020, but that has since been delayed to 2025. [2] The entire cost of the mission was placed at around 400 million euros. The main scientific instrument aboard Biomass will be a synthetic aperture radar (SAR) operating at 435 MHz. [5] The satellite will measure 10 x 12 x 20m, weight around 1.2 tonnes and it is set to orbit the Earth at an altitude of 600 km. [6] [7] [8]

The Biomass mission is planned to continue its observation of Earth for five years after launch, during which it will provide detailed information about at least eight growth cycles in the world's forests. [9]

In 2016, it was announced that Airbus Defence and Space UK will build the satellite under a contract valued at 229 million euros. [10] [11] Biomass will be equipped with a large 12-m deployable antenna, which will be built in Friedrichshafen, Germany. [11] The instruments of the antennas are being fabricated by Italy and France through Thales Alenia Space. [12] All devices for assembly of the satellite structure, including vertical transport equipment, assembly and disassembly of satellite panels, assembly and disassembly of the Synthetic Aperture Radar will be done by the Spanish company SENER. [8]

Scientific objectives

The main objective of the mission is to measure forest biomass in order to assess terrestrial carbon stocks and fluxes and better understand the planet's carbon cycle. [3] The Biomass mission will explore Earth's surface at the P-band wavelength, the first time this technique is used from orbit. This will allow it to provide accurate maps of tropical, temperate and boreal forest biomass that are not obtainable by ground measurement techniques. [11] [13] [14] The amount of biomass and forest height will be measured at a resolution of 200 m, and forest disturbances such as clear-cutting at a resolution of 50 m. [15] [16]

Its stated objectives are: [17]

  1. Reduce the large uncertainties in the carbon flux due to changes in land use
  2. Provide scientific support for international treaties, agreements and programs such as the UN’s REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries) program
  3. Improve understanding and predictions of landscape-scale carbon dynamics
  4. Provide observations to initialize and test the land element of Earth system models
  5. Provide key information for forest resources management and ecosystem services.

It is expected that the data sent back from the satellite will also contribute new information to other areas of climate science, like measuring the biomass of desert regions to find fossil water and new water sources in arid regions as well as contributing to observations of ice sheet dynamics, subsurface geology and forest topography. [11]

See also

Related Research Articles

CryoSat is an ESA programme to monitor variations in the extent and thickness of polar ice through use of a satellite in low Earth orbit. The information provided about the behaviour of coastal glaciers that drain thinning ice sheets will be key to better predictions of future sea level rise. The CryoSat-1 spacecraft was lost in a launch failure in 2005, however the programme was resumed with the successful launch of a replacement, CryoSat-2, launched on 8 April 2010.

<span class="mw-page-title-main">ADM-Aeolus</span> Wind-measuring satellite

Aeolus, or, in full, Atmospheric Dynamics Mission-Aeolus (ADM-Aeolus), was an Earth observation satellite operated by the European Space Agency (ESA). It was built by Airbus Defence and Space, launched on 22 August 2018, and operated until it was deorbited and re-entered the atmosphere over Antarctica on 28 July 2023. ADM-Aeolus was the first satellite with equipment capable of performing global wind-component-profile observation and provided much-needed information to improve weather forecasting. Aeolus was the first satellite capable of observing what the winds are doing on Earth, from the surface of the planet and into the stratosphere 30 km high.

The FLuorescence EXplorer (FLEX) is a planned mission by the European Space Agency to launch a satellite to monitor the global steady-state chlorophyll fluorescence in terrestrial vegetation. FLEX was selected for funding on 19 November 2015 and will be launched on a Vega C rocket from Guiana Space Centre in mid-2026.

<span class="mw-page-title-main">Copernicus Programme</span> Programme of the European Commission

Copernicus is the Earth observation component of the European Union Space Programme, managed by the European Commission and implemented in partnership with the EU member states, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Joint Research Centre (JRC), the European Environment Agency (EEA), the European Maritime Safety Agency (EMSA), Frontex, SatCen and Mercator Océan.

<span class="mw-page-title-main">Sentinel-1</span> Earth observation satellite

Sentinel-1 is the first of the Copernicus Programme satellite constellations conducted by the European Space Agency. The mission was originally composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which shared the same orbital plane. Two more satellites, Sentinel-1C and Sentinel-1D are in development. Sentinel-1B was retired following a power supply issue on December 23, 2021, leaving Sentinel-1A the only satellite of the constellation currently operating. Sentinel-1C is currently planned to launch in the final quarter of 2024.

<span class="mw-page-title-main">Sentinel-2</span> Earth observation mission

Sentinel-2 is an Earth observation mission from the Copernicus Programme that acquires optical imagery at high spatial resolution over land and coastal waters. The mission's Sentinel-2A and Sentinel-2B satellites were joined in orbit in 2024 by a third, Sentinel-2C, and in the future by Sentinel-2D, eventually replacing the A and B satellites, respectively.

<span class="mw-page-title-main">Soil Moisture and Ocean Salinity</span> ESA Earth Observation Satellite

Soil Moisture and Ocean Salinity (SMOS) is a satellite which forms part of ESA's Living Planet Programme. It is intended to provide new insights into Earth's water cycle and climate. In addition, it is intended to provide improved weather forecasting and monitoring of snow and ice accumulation.

The Living Planet Programme (LPP) is a programme within the European Space Agency which is managed by the Earth Observation Programmes Directorate. LPP consists of two classes of Earth observation missions including research missions known as Earth Explorers, and the Earth Watch class of missions whose objective is to develop support operational applications such as numerical weather forecasting or resource management.

<span class="mw-page-title-main">Mission Science Division</span>

The Earth and Mission Science Division is a group of European Space Agency (ESA) staff mission scientists, contractors, research fellows, young graduates, trainees, and administrative staff working within the Climate Action, Sustainability and Science Department of the Directorate of Earth Observation Programmes. The Division is located at ESA's European Space Research and Technology Centre in Noordwijk, South Holland, The Netherlands.

<span class="mw-page-title-main">CryoSat-2</span> European Space Agency environmental research satellite

CryoSat-2 is a European Space Agency (ESA) Earth Explorer Mission that launched on April 8, 2010. CryoSat-2 is dedicated to measuring polar sea ice thickness and monitoring changes in ice sheets. Its primary objective is to measure the thinning of Arctic sea ice, but has applications to other regions and scientific purposes, such as Antarctica and oceanography.

The European Data Relay System (EDRS) system is a European constellation of GEO satellites that relay information and data between satellites, spacecraft, UAVs, and ground stations. The first components were launched in 2016 and 2019.

<span class="mw-page-title-main">EarthCARE</span> Joint European/Japanese Earth research satellite

EarthCARE, nicknamed Hakuryū, is a joint European/Japanese satellite, the sixth of ESA's Earth Explorer Programme. The main goal of the mission is the observation and characterization of clouds and aerosols as well as measuring the reflected solar radiation and the infrared radiation emitted from Earth's surface and atmosphere.

<span class="mw-page-title-main">CryoSat-1</span> ESA satellite to study polar ice; lost in launch failure in 2005

CryoSat-1, also known as just CryoSat, was a European Space Agency satellite which was lost in a launch failure in 2005. The satellite was launched as part of the European Space Agency's CryoSat mission, which aims to monitor ice in the high latitudes. The second mission satellite, CryoSat-2, was successfully launched in April 2010.

<span class="mw-page-title-main">Jupiter Icy Moons Explorer</span> European mission to study Jupiter and its moons since 2023

The Jupiter Icy Moons Explorer is an interplanetary spacecraft on its way to orbit and study three icy moons of Jupiter: Ganymede, Callisto, and Europa. These planetary-mass moons are planned to be studied because they are thought to have significant bodies of liquid water beneath their frozen surfaces, which would make them potentially habitable for extraterrestrial life.

Vega C, or Vega Consolidation, is a European expendable, small-lift launch vehicle developed and produced by Avio. It is an evolution of the original Vega launcher, designed to offer greater launch performance and flexibility.

<span class="mw-page-title-main">Far-infrared Outgoing Radiation Understanding and Monitoring</span> Future ESA satellite to study Earths radiation budget

FORUM is an Earth observing satellite that is scheduled to launch in 2027.

<span class="mw-page-title-main">2027 in spaceflight</span>

This article documents expected notable spaceflight events during the year 2027.

Eutelsat Quantum is a communications satellite developed in the framework of a public-private partnership between the European Space Agency, Eutelsat and Airbus Defence and Space. Operated by Eutelsat, its design allows for it to reconfigure its radios coverage zone and alter its performance according its needs. It is located in a geostationary orbit and its longitude may be modified to cover any region in the world.

References

  1. 1 2 "Arianespace and ESA announce the Earth Explorer Biomass launch contract". Arianespace (Press release). 28 October 2019. Retrieved 31 October 2019.
  2. 1 2 3 "Bye-Bye Biomass: forest monitoring satellite departs for final testing before launch". Airbus . 2 November 2022. Retrieved 3 November 2022.
  3. 1 2 "Biomass". ESA. 3 May 2019. Retrieved 27 May 2019.
  4. "The Earth Explorer Biomass". ESA . Retrieved 22 February 2019.
  5. Arcioni, M.; Bensi, P.; Fehringer, M.; Fois, F.; Hélière, F.; Lin, C.-; Scipal, K. (July 2014). "The Biomass mission, status of the satellite system". 2014 IEEE Geoscience and Remote Sensing Symposium. pp. 1413–1416. doi:10.1109/IGARSS.2014.6946700. ISBN   978-1-4799-5775-0. S2CID   21525036.
  6. Amos, Jonathan (7 May 2013). "ESA Approves Biomass Satellite to Monitor Earth's Forests". BBC . Retrieved 20 September 2019.
  7. "Image: Biomass Earth Explorer satellite". Phys.org. 13 February 2019. Retrieved 20 September 2019.
  8. 1 2 Harebottle, Adrienne (11 May 2018). "Sener to Develop Biomass Satellite Assembly Devices for ESA". Via Satellite. Retrieved 20 September 2019.
  9. "World's Biomass to Be Measured With Satellite Constructed by Airbus Defence and Space". Bioenergy Insight Magazine. 12 May 2016. Retrieved 20 September 2019.
  10. de Selding, Peter B. (3 May 2016). "Airbus UK to build Europe's Biomass satellite, featuring first use of P-band radar". SpaceNews . Retrieved 20 September 2019.
  11. 1 2 3 4 "Airbus Defence and Space Signs Contract to Build Biomass – the European Space Agency's Forest Mission". Airbus. 3 May 2016. Retrieved 20 September 2019.
  12. "Aerospace, BIOMASS space mission will have Italo-French "antennas"". ResearchItaly. 31 October 2017. Archived from the original on 2 January 2019. Retrieved 27 May 2019.
  13. Massotti, Luca; Arcioni, Marco; Ankersen, Pierluigi Silvestrin Finn; Casasco, Massimo (2013-01-01). "Modern Attitude Control and Co-design for the Biomass Satellite (Earth Explorer Core Mission 7)". IFAC Proceedings Volumes. 19th IFAC Symposium on Automatic Control in Aerospace. 46 (19): 405–410. doi: 10.3182/20130902-5-DE-2040.00036 . ISSN   1474-6670.
  14. Laurin, Gaia Vaglio; Pirotti, Francesco; Cellegari, Maria; Chen, Qi; Cuozzo, Giovanni; Lingua, Emanuele; Notarnicola, Claudia; Papale, Dario (2019). "Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates". In Kumar, Lalit; Mutanga, Onisimo (eds.). Remote Sensing of Above Ground Biomass. Basel, Beijing, Wuhan, Barcelona, Belgrade: MDPI. p. 61. ISBN   9783039212095.
  15. "ESA: Biomass satellite to be launched in 2020". UN-SPIDER . 23 February 2015. Retrieved 20 September 2019.
  16. Scipal, K.; Arcioni, M.; Chave, J.; Dall, J.; Fois, F.; LeToan, T.; Lin, C.; Papathanassiou, K.; Quegan, S. (July 2010). "The BIOMASS mission — an ESA Earth Explorer candidate to measure the BIOMASS of the earth's forests" (PDF). 2010 IEEE International Geoscience and Remote Sensing Symposium. pp. 52–55. doi:10.1109/IGARSS.2010.5648979. ISBN   978-1-4244-9565-8. S2CID   10610055.
  17. Kramer, Herbert J. (8 December 2018). "Biomass (Biomass monitoring mission for Carbon Assessment)". eoPortal - Earth Observation Directory & News. Retrieved 20 September 2019.