CC-preferring endodeoxyribonuclease

Last updated
CC-preferring endodeoxyribonuclease
Identifiers
EC no. 3.1.21.6
CAS no. 37211-67-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

CC-preferring endodeoxyribonuclease (EC 3.1.21.6, Streptomyces glaucescens exocytoplasmic dodeoxyribonuclease) is an enzyme. [1] [2] This enzyme catalyses the following chemical reaction

endonucleolytic cleavage to give 5'-phosphooligonucleotide end-products, with a preference for cleavage within the sequence CC

This enzyme has preference for CC sites in double-stranded circular and linear DNA.

Related Research Articles

A restriction enzyme, restriction endonuclease, REase, ENase orrestrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone of the DNA double helix.

DNA topoisomerases are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA replication and transcription. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one or both of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

<span class="mw-page-title-main">DD-transpeptidase</span>

DD-transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-αα-D-alanyl moiety of R-L-αα-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

<span class="mw-page-title-main">Furin</span> Enzyme found in humans

Furin is a protease, a proteolytic enzyme that in humans and other animals is encoded by the FURIN gene. Some proteins are inactive when they are first synthesized, and must have sections removed in order to become active. Furin cleaves these sections and activates the proteins. It was named furin because it was in the upstream region of an oncogene known as FES. The gene was known as FUR and therefore the protein was named furin. Furin is also known as PACE. A member of family S8, furin is a subtilisin-like peptidase.

<span class="mw-page-title-main">TEV protease</span> Highly specific protease

TEV protease is a highly sequence-specific cysteine protease from Tobacco Etch Virus (TEV). It is a member of the PA clan of chymotrypsin-like proteases. Due to its high sequence specificity, TEV protease is frequently used for the controlled cleavage of fusion proteins in vitro and in vivo.

<span class="mw-page-title-main">Nuclease S1</span> Class of enzymes

Nuclease S1 is an endonuclease enzyme that splits single-stranded DNA (ssDNA) and RNA into oligo- or mononucleotides. This enzyme catalyses the following chemical reaction

Deoxyribonuclease IV (phage-T4-induced) is catalyzes the degradation nucleotides in DsDNA by attacking the 5'-terminal end.

PstI is a type II restriction endonuclease isolated from the Gram negative species, Providencia stuartii.

<span class="mw-page-title-main">Exonuclease VII</span>

The enzyme exodeoxyribonuclease VII is a bacterial exonuclease enzyme. It is composed of two nonidentical subunits; one large subunit and 4 small ones. that catalyses exonucleolytic cleavage in either 5′- to 3′- or 3′- to 5′-direction to yield nucleoside 5′-phosphates. The large subunit also contains an N-terminal OB-fold domain that binds to nucleic acids.

Crossover junction endodeoxyribonuclease, also known as Holliday junction resolvase, Holliday junction endonuclease, Holliday junction-cleaving endonuclease, Holliday junction-resolving endoribonuclease, crossover junction endoribonuclease, and cruciform-cutting endonuclease, is an enzyme involved in DNA repair and homologous recombination. Specifically, it performs endonucleolytic cleavage that results in single-stranded crossover between two homologous DNA molecules at the Holliday junction to produce recombinant DNA products for chromosomal segregation. This process is known as Holliday junction resolution.

Deoxyribonuclease X is an enzyme. This enzyme catalyses the following chemical reaction

Deoxyribonuclease (pyrimidine dimer) (EC 3.1.25.1, endodeoxyribonuclease (pyrimidine dimer), bacteriophage T4 endodeoxyribonuclease V, T4 endonuclease V) is an enzyme. This enzyme catalyses the following chemical reaction:

Enterobacter ribonuclease is an enzyme. This enzyme catalyses the following chemical reaction

Aminopeptidase S is an enzyme. This enzyme catalyses the following chemical reaction

Glutamyl endopeptidase II is an enzyme. This enzyme catalyses the following chemical reaction

C5a peptidase is an enzyme. The primary cleavage site is at His67-Lys68 in human C5a with a minor secondary cleavage site at Ala58-Ser59.

Mycolysin is an enzyme. This enzyme catalyses the following chemical reaction

Streptomyces glaucescens is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces glaucescens produces tetracenomycin C, tetracenomycin D and tetracenomycin E.

<span class="mw-page-title-main">Tetracenomycin C</span> Chemical compound

Tetracenomycin C is an antitumor anthracycline-like antibiotic produced by Streptomyces glaucescens GLA.0. The pale-yellow antibiotic is active against some gram-positive bacteria, especially against streptomycetes. Gram-negative bacteria and fungi are not inhibited. In considering the differences of biological activity and the functional groups of the molecule, tetracenomycin C is not a member of the tetracycline or anthracyclinone group of antibiotics. Tetracenomycin C is notable for its broad activity against actinomycetes. As in other anthracycline antibiotics, the framework is synthesized by a polyketide synthase and subsequently modified by other enzymes.

References

  1. Xia YN, Morgan R, Schildkraut I, Van Etten JL (1988). "A site-specific single-strand endonuclease activity induced by NYs-1 virus-infection of a Chlorella-like green-alga". Nucleic Acids Res. 16 (20): 9477–9487. doi:10.1093/nar/16.20.9477. PMC   338757 . PMID   3186439.
  2. Aparicio JF, Freije JM, Lopez-Otin C, Cal S, Sanchez J (1992). "A Streptomyces glaucescens endodeoxyribonuclease which shows a strong preference for CC dinucleotide". Eur. J. Biochem. 205 (2): 695–699. doi: 10.1111/j.1432-1033.1992.tb16831.x . PMID   1533367.