This article needs additional citations for verification .(May 2021) |
This is an incomplete list of volcanic eruptions in Iceland. Please see External links below for databases of Icelandic eruptions which include over 530 events.
For latest information about the current/ongoing series of eruptions near Grindavik on the Reykjanes peninsula - See 2023–2024 Sundhnúkur eruptions
There are about 32 volcanic systems in Iceland. Volcanic system means a volcano-tectonic fissure system and – very often a bigger volcano, a so-called central volcano which in most cases is a stratovolcano and may contain a caldera. [2] [3]
- Askja; An active volcano in the central highlands. A complex of nested calderas within the Dyngjufjöll mountains. The Askja system includes, for example, the Herðubreið tabular volcano, the Herðubreiðartögl palagonite ridge and the shield volcanoes Kollóttadyngja, Flatadyngja and Svartadyngja. (Part of the North volcanic zone (NVZ)).
See Chronology of Eruptions below: Askja 11,000, Askja 1874, Askja 1875-January, Askja 1875-February, Askja 1875-March, Askja 1876, Askja 1921, Askja 1922, Askja 1923, Askja 1926, Askja 1929, Askja 1961.
- Bárðarbunga; An active stratovolcano located under the Vatnajökull glacier. The second highest mountain in Iceland, 2,009 metres (6,591 ft) above sea level, and part of a volcanic system that is approximately 200 kilometres (120 mi) long and 25 kilometres (16 mi) wide. Historically there are large eruptions every 250–600 years. Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Bárðarbunga ca.6600-6700 BC, Bárðarbunga 877, Bárðarbunga 1477, Bárðarbunga 1701-1864, Bárðarbunga 1910, Bárðarbunga 1996, Bárðarbunga 2010, Bárðarbunga 2014-15. [4]
- Brennisteinsfjöll; A minor system on the Reykjanes Peninsula in the southwest. crater rows and small shield volcanoes. Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Brennisteinsfjöll 5200BP, Brennisteinsfjöll 1340, Brennisteinsfjöll 1341
- Dyngjufjöll, a volcanic mountain range in the northeast of Iceland. It belongs to the Askja volcanic system or the volcanic system, (sometimes called the (Dyngjufjöll volcanic system), and is part of the Vatnajökull National Park. The central volcano of basalt and rhyolite has its own system of crevices and fissures, which last erupted in 1961. (Part of the North volcanic zone (NVZ)).
See Chronology of Eruptions below: Dyngjufjöll 1961,
- Eldey a small island about 13 kilometres off the coast of the Reykjanes Peninsula in south west. The Eldey and Geirfuglasker volcanic systems together form the 35–40 km (20 to 25 mile) long Eldey system on the mid-Atlantic ridge. There is not a central volcano. [5]
See Chronology of Eruptions below:[ example needed ]
- Eldfell, a volcanic cone on the island of Heimaey. It formed in a volcanic eruption which began without warning on the eastern side of Heimaey, in the Westman Islands, on 23 January 1973. The eruption caused a major crisis for the island and led to its temporary evacuation. Volcanic ash fell over most of the island, destroying around 400 homes, and a lava flow threatened to close off the harbour, the island's main income source via its fishing fleet. An operation was mounted to cool the advancing lava flow by pumping sea water onto it, which was successful in preventing the loss of the harbour. Part of the East volcanic zone (EVZ) .
See Eruptive Chronology below: Eldfell 1973
- Eldgjá, a volcano and a canyon that is part of the Katla volcano; a segment of a 40 kilometres (25 mi) chain of volcanic craters and fissure vents that extends northeast away from Katla. Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Eldgjá 934 or 939
- Esja, (Esjan), a 914 m (2,999 ft) mountain situated in the south-west of Iceland, about ten kilometres north of Iceland's capital city Reykjavík. Esja is not a single mountain, but a volcanic mountain range, made from basalt and tuff. Esja was built up at the end of the Pleistocene with the beginning of the Ice Age. During the warm periods lava flowed, and in the cold periods ridges of tuff were built up under the glacier. The western part of the mountain range is the oldest (about 3.2 million years) and the eastern part is the youngest (about 1.8 million years). [6] Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Ezjá 3,200,000, Ezjá 1,800,000
- Esjufjöll, subglacial volcano at the SE part of the Vatnajökull icecap. A strict nature reserve. [7] The volcanic system consists of the Snaehetta central volcano with a large caldera. Most of the volcano, including the 40 km2 caldera, is covered by the icecap. On the other hand, are parts of the SE flank exposed in NW-SE-trending ridges. [8] Most of the exposed rocks are mildly alkaline basalts, but there are also small amounts of rhyolitic rocks. [8] Part of the East volcanic zone (EVZ) (or Oræfi Volcanic Belt. [9] [10] )
See Chronology of Eruptions below:[ example needed ]
- Eyjafjallajökull, (E15), [11] An ice cap covers the caldera, erupts relatively frequently since the Last Glacial Period, most recently in 2010 disrupting international travel. [12] [13] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Eyjafjallajökull 1612, Eyjafjallajökull 1821-23, Eyjafjallajökull 2010 March, Eyjafjallajökull 2010 April
- Fagradalsfjall; is an active tuya volcano formed in the Last Glacial Period on the Reykjanes Peninsula, [14] [15] around 40 kilometres (25 mi) from Reykjavík. [16] Fagradalsfjall is also the name for the wider volcanic system covering an area 5 kilometres (3 mi) wide and 16 kilometres (10 mi) long between the Svartsengi and Krýsuvík systems. [17] No volcanic eruption had occurred for 815 years on the Reykjanes Peninsula until 19 March 2021. Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Fagradalsfjall 2021, Fagradalsfjall 2022, Fagradalsfjall 2023
- Festarfjall, an exposed tuya mountain on the south coast of the Reykjanes Peninsula near the Fagradalsfjall volcanic system and Grindavík. The flat topped volcano formed under the ice-sheet in the Last Glacial Period on the Reykjanes Peninsula, [14] It has been bisected vertically by coastal erosion, to expose its inner structure, including lava layers and an intrusive magma dyke. It may have been formed during two separate glacial periods. [14] Part of the Reykjanes volcanic zone (RVZ) . [ example needed ]
- Fremrinámur, A volcanic system on the basalt plateau, at the junction of the Mid-Atlantic Ridge and the Greenland–Iceland–Faeroe Ridge. [18] (Part of the North volcanic zone (NVZ)).
See Chronology of Eruptions below: Fremrinámur 800 BC.
- Geirfuglasker ("Great Auk Rock") was a small islet near Reykjanes, Iceland, a volcanic rock with steep sides except for two landing places. It submerged beneath the waves in 1830, due to a volcanic eruption. Later a new Geirfuglasker appeared on the site. [19] (Part of the Reykjanes volcanic zone (RVZ)).
See Chronology of Eruptions below: Geirfuglasker 1830.
Gjálp is a hyaloclastite ridge (tindar) under the Vatnajökull glacier shield. It originated in an eruption series in 1996 which is probably part of the Grímsvötn volcanic system, [20] [21]
It was the first modern technical monitoring and analysis of a subglacial eruption under a thick ice cover with a resulting jökulhlaup. [22] [23] The volume of meltwater was around 4 km3. [24] The Vatnajökull glacier is part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Gjálp 1938, Gjálp 1996.
- Grensdalur; is a volcano that was active during Pleistocene. Part of the South Iceland Seismic Zone (SISZ) .
See Chronology of Eruptions below: Grensdalur 2,500,000
- Grímsey, is a small Icelandic island, 40 kilometres (20 nautical miles) off the north coast of the main island of Iceland, where it straddles the Arctic Circle. [25] (However, due to long-term oscillations in the Earth's axis, the Arctic Circle is shifting northward by about 14.5 metres (48 ft) per year (varying substantially from year to year due to the complexity of the movement). As of 2020, the place where the line crosses the island is close to the northern tip and by the middle of the 21st century it will pass north of Grimsey altogether.) Part of the Kolbeinsey Ridge (KR) .
See Chronology of Eruptions below: [ example needed ]
- Grímsnes, is a fissure or crater row volcanic system. Part of the South Iceland Seismic Zone (SISZ) .
See Chronology of Eruptions below: Grímsnes 3500 BC.
- Kerið is a volcanic crater lake located in the Grímsnes area in south Iceland, along the Golden Circle. It is one of several crater lakes in the area, known as the Western Volcanic Zone, created as the land moved over a localized hotspot, but it has the most visually recognizable caldera still intact. The caldera, like the other volcanic rock in the area, is composed of a red (rather than black) volcanic rock, and is approximately 55 m (180 ft) deep, 170 m (560 ft) wide, and 270 m (890 ft) across. Kerið's caldera is one of the three most recognisable volcanic craters because at approximately 6,500 years old, it is only half the age of most of the surrounding volcanic features. The other two are Seyðishólar and Kerhóll.
Although originally believed to have been formed by a volcanic explosion, studies of the Grímsnes region failed to find any supporting evidence. So it is now believed that Kerið was a cone volcano which erupted and emptied its magma reserve. Once the magma was depleted, the weight of the cone collapsed into the empty magma chamber. The current pool of water at the bottom of the crater is at the same level as the water table and is not caused by rainfall. [26]
See Chronology of Eruptions below: Kerið 6,500 BP.
- Grímsvötn; an active volcano with a (partially subglacial) fissure system located in Vatnajökull National Park. Including the Skaftá eruption of 1783, Grímsvötn is probably the most eruptive volcano system in Iceland. The Laki/Lakagígar lava field alone is estimated to have produced about 15 cubic kilometres (3.6 cu mi) of lava. Grímsvötn has probably had more than 30 eruptions in the last 400 years, and produced around 55 cubic kilometres (13 cu mi) over the last 10,000 years. [1] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Grímsvötn 8230 BC, Grímsvötn 753, Grímsvötn 781, Grímsvötn 1332, Grímsvötn 1341, Grímsvötn 1354, 1598, 1603, 1619, 1629, 1638, 1659, 1684-85, 1774, 1783-84, 1797, 1807, 1816, 1854, 1861, 1867, 1873, 1883, 1885, 1887, 1889, 1892, 1897, 1902-04, 1905-06, 1908-09, 1910, 1922, 1923, 1933, 1938, 1941, 1945, 1954, 1983, 1984, 1996, 1998, 20 04, 2011.
See also Grímsvötn Eruptive activity below
- Hekla; an active stratovolcano in the south. It is one of the most active volcanoes; over 20 eruptions since the year 1210. [27] During the Middle Ages it was known as the "Gateway to Hell". Part of a volcanic ridge, 40 km (25 mi) long. Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Hekla 5000 BC, Hekla 3900 BC, Hekla 2500 BC, Hekla 1000-900 BC, Hekla 800, 1104, 1158, 1206, 1222, 1300, 1341, 1389, 1440, 1510, 1554, 1597, 1636-37, 1693, 1725, 1766-68, 1845-46, 1878, 1913, 1947-48, 1970, 1980-81, 1991, Hekla 2000.
See also Hekla Eruptive activity below
- Helgafell - small mountain on Snæfellsnes Peninsula. Part of the Snæfellsnes volcanic belt (SVB) .
See Chronology of Eruptions below: [ example needed ]
- Helgafell (on Heimaey), formed from a secondary eruption on the Stórhöfði peninsula on the island Heimaey, Vestmannaeyjar (Westman Islands). [28] [29] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Stórhöfði peninsula 6,000 BP, Helgafell (on Heimaey) 3,000 BC
- Hengill, A volcanic table mountain the southwest, to the south of Þingvellir. The volcano is still active, evidenced by its numerous hot springs and fumaroles. [30] Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Hengill 1130 BC
- Herðubreið, is a tuya in northern part of Vatnajökull National Park, close to Askja volcano. It formed beneath the icesheet during the last glacial period. [31]
- Hofsjökull, subglacial volcano is a shield type with caldera, formed during the Last Glacial Period. The Hofsjökull glacier is the third largest ice cap after Vatnajökull and Langjökull. The largest active volcano in the country, situated in the west of the Highlands [32] [33]
See chronology below: Hofsjökull 2,500,000-11,000, Hofsjökull 2015
- Holuhraun, A lava field just north of the Vatnajökull ice cap, in the Icelandic Highlands, in Suður-Þingeyjarsýsla, Northeastern Region. The lava field was created by fissure eruptions. [34] (Part of the North volcanic zone (NVZ)).
See Chronology of Eruptions below: Holuhraun 2014-15
- Hrómundartindur, is a mountain north of Hveragerði. [ example needed ]
- Hvalbakur. a small, uninhabited island is the easternmost point of Iceland. Located in the Austurland region, 35 kilometres (22 mi) offshore, it is 200 metres (660 ft) long and up to 100 metres (330 ft) wide, with its highest point 5 metres (16 ft) above sea level. It appears on maps from 1761 [35]
See Chronology of Eruptions below: [ example needed ]
- Hvannadalshnúkur, a pyramidal peak on the northwestern rim of the summit crater of the Öræfajökull volcano in Vatnajökull National Park, Iceland. Its summit is the highest point in the country.
- Hveravellir, is a geothermal field of the Oddnýjarhnjúkur-Langjökull subglacial volcanic system in the north of Langjökull glacier. Part of the West volcanic zone (WVZ) .
See Chronology of Eruptions below: Hveravellir 5,800 BC, Hveravellir 1000 BC
- Hverfjall, (Hverfell) is a tephra cone or Phreatomagmatic eruption in northern Iceland. The eruption was in the southern part of the Krafla fissure swarm. [36] (Part of the North volcanic zone (NVZ)).
See Chronology of Eruptions below: Hverfjall 500 BC
- Iceland hotspot; a hotspot which is partly responsible for the high volcanic activity which has formed the Iceland Plateau and the island of Iceland. Iceland's location astride the Mid-Atlantic Ridge, where the Eurasian and North American Plates are moving apart, is partly responsible for this intense volcanic activity, but an additional cause is necessary to explain why Iceland is a substantial island while the rest of the ridge mostly consists of seamounts, with peaks below sea level.
As well as being a region of higher temperature than the surrounding mantle, the hotspot is believed to have a higher concentration of water. The presence of water in magma reduces the melting temperature, which may also play a role in enhancing Icelandic volcanism.
- Ingólfsfjall; A tuya in the vicinity of Hveragerði originating from subglacial eruptions and consisting mostly of basalt and palagonite. [37] Part of the South Iceland Seismic Zone (SISZ) .
See Chronology of Eruptions below: Ingólfsfjall 400,000
- Jólnir, was a volcanic island off the south coast between December, 1965 and July, 1966. A vent of Surtsey, along with Syrtlingur and Surtla. Over the following eight months it appeared and disappeared several times, as wave erosion and volcanic activity alternated in dominance, until oceanic erosion led to its final disappearance. [38] [39] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Jólnir 1963
- Katla; Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Katla 10,000, Katla 1000 BC, Katla 751, Katla 822, Katla 920, Katla 934, Katla 1000, Katla 1179 , Katla 1245, Katla 1311, Katla 1357, Katla 1416, 1480, 1580, 1612, 1625, 1660, 1693, 1721, 1755, 1821, 1860, 1918, 1955.
See also Katla Eruptive activity below
- Keilir (mountain), is a Pleistocene subglacial mound or perhaps a conical tuya [40] on Reykjanes Peninsula. [41] Part of Krýsuvík volcanic system, [42] and Reykjanesfólkvangur and about 17 miles southwest of Reykjavík. Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Keilir 2,500,000-11,000
- Kerlingarfjöll, a mountain range in the Highlands of Iceland near the Kjölur highland road. Part of a large tuya volcano system with hot springs and rivulets, as well as red volcanic rhyolite stone.
See Chronology of Eruptions below: [ example needed ]
- Kolbeinsey, is a small basalt islet, devoid of vegetation, in the Greenland Sea located 105 kilometres (55 nautical miles) off the northern coast of Iceland, 74 km (40 nmi) north-northwest of the island of Grímsey. It is the northernmost point of Iceland and lies north of the Arctic Circle. [43] Kolbeinsey is subject to rapid wave erosion and is expected to disappear in the near future. Erosion rate data from 1994 suggested that this would happen around 2020. [44] As of April 2021 [update] , two small skerries remained visible at low tide. [45] [46]
Kolbeinsey is the only sub-aerial expression of this portion of the Mid-Atlantic Ridge. It formed during the late-Pleistocene (from circa 2.58 million to 11,700 years ago.) (or Holocene). Dredged glass shards indicate submarine eruptive activity during the late-Pleistocene until at least 11,800 radiocarbon years ago. [47] Part of the Kolbeinsey Ridge (KR) .
See Chronology of Eruptions below: [ example needed ]
- Kolbeinsey Ridge, is a segment of the Mid-Atlantic Ridge located in the Arctic Ocean. It is bounded to the south by the Tjörnes Fracture Zone, which connects the submarine ridge to the on-shore Northern Volcanic Zone rifting center in eastern Iceland. [48] The volcanic islands Kolbeinsey and Grímsey lie along the ridge. Part of the Kolbeinsey Ridge (KR) .
See Chronology of Eruptions below: [ example needed ]
- Kollóttadyngja, A shield volcano [49] in the Ódáðahraun lava-field. The summit crater contains a bowl about 150 metres in diameter with a depth of about 60–70 metres. Part of the North volcanic zone (NVZ) .
See Chronology of Eruptions below: [ example needed ]
- Krafla, a volcanic caldera of about 10 km in diameter with a 90 km long fissure zone. It is located in the north of Iceland in the Mývatn region and is situated on the Iceland hotspot atop the Mid-Atlantic Ridge, which forms the divergent boundary between the North American Plate and the Eurasian Plate. Its highest peak reaches up to 818 m and it is 2 km in depth. There have been 29 reported eruptions in recorded history. Part of the North volcanic zone (NVZ) .
See Chronology of Eruptions below: Krafla 500BC, Krafla 900, Krafla 1724-29, Krafla 1746, Krafla fires 1975, Krafla fires 1977 April, Krafla fires 1977 September, Krafla fires 1980 March, Krafla fires 1980 July, Krafla fires 1980 October, Krafla fires 1981 January, Krafla fires 1981 November, Krafla fires 1984
- Krakatindur, a volcano in the county of Rangárvallasýsla, located east of Hekla, it is part of the Nýjahraun lava field. It is 858 meters high and last erupted in 1878. [50] [51] [52] (Part of the East volcanic zone (EVZ)).
See Chronology of Eruptions below: Krakatindur 1878
- Krýsuvík, The volcanic system is a fissure swarm, situated on the divergent tectonic plate boundary of the Reykjanes peninsula is a fissure system without a central volcano. [53] [54] Part of the Reykjanes volcanic zone (RVZ).
See Chronology of Eruptions below: Krýsuvík 100,000, Krýsuvík 1151-1188
- Kverkfjöll, a mountain range situated on the north-eastern border of the Vatnajökull glacier, between the Vatnajökull glacier and the Dyngjufjöll mountains. Part of the North volcanic zone (NVZ).
See Chronology of Eruptions below: Kverkfjöll 1655, Kverkfjöll 1711-12, Kverkfjöll 1729, Kverkfjöll 1929
- Laki. Lakagigar is a volcanic fissure that bisects Laki mountain in the western part of Vatnajökull National Park. Lakagígar is part of the Grímsvötn volcanic system. The pollution from the 1783 eruption led to the deaths of over 50% of Iceland's livestock, and the destruction of the vast majority of crops. The resulting famine then killed approximately a quarter of the island's human population. [55] The eight-month emission of sulfuric aerosols resulted in one of the most important climatic and socially significant natural events of the last millennium. [56] [57] triggering up to 6 million deaths worldwide. Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Laki 1783-84
- Landmannalaugar; a lava field in the Fjallabak Nature Reserve in the Highlands, on the edge of the Laugahraun lava field. [58] This lava field was formed by an eruption in approximately 1477. [59] (Part of the East volcanic zone (EVZ)).
See Chronology of Eruptions below: Landmannalaugar 1477
- Langjökull, (long glacier) is the second largest ice cap in Iceland, (953 km2), after Vatnajökull. It is situated in the west of the interior or Highlands of Iceland and can be seen clearly from Haukadalur. The volume is 195 km3 and up to 580 m (1,900 ft) thick. The highest point (Baldjökull) is about 1,450 m (4,760 ft) above sea level. The largest recorded surface area was in 1840. [60] Part of the West volcanic zone (WVZ) . Associated volcanoes: Hveravellir, Prestahnúkur
- Ljósufjöll, is a fissure vent system and central volcano on the Snæfellsnes Peninsula. The eruption in 960±10 CE is the only one on the peninsula in recorded history. [61] Part of the Snæfellsnes volcanic belt (SVB)) .
See Chronology of Eruptions below: Ljósufjöll 960
- Loki-Fögrufjöll, a subglacial volcano under the Vatnajökull glacier, within the Bárðarbunga fissure system. It is independent of Bárðarbunga itself. Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Loki-Fögrufjöll 1910, Loki-Fögrufjöll 1986, Loki-Fögrufjöll 1991, Loki-Fögrufjöll 2006, Loki-Fögrufjöll 2008, Loki-Fögrufjöll 2011.
- Lýsuhóll?, (also known as Lysukard or Helgrindur), is the smallest volcano in Iceland. It is centrally located on Snaefellsnes Peninsula. It includes a chain of small, basaltic cinder cones. Part of the Snæfellsnes volcanic belt (SVB) .
The last eruption of Lysuhóll is not dated. [62]
- The Mývatn fires were a series of fires at Krafla that raged from 1724 to 1729. Lava flowed into Mývatn and the explosive crater Víti at Krafla was formed.
See Chronology of Eruptions below:[ example needed ]
- Nýey, was a small, uninhabited island that formed in 1783 due to an underwater eruption in the Mid-Atlantic Ridge southwest of Reykjanes, Iceland. It disappeared within a year. [63] [64] [65] Note: The tiny skerry called Eldeyjarboði may be its remnants.[ citation needed ] (Part of the Reykjanes volcanic zone (RVZ)).
See Chronology of Eruptions below: Nýey 1783,
- Öræfajökull, An ice-covered active volcano, it lies within the Vatnajökull National Park. (Part of the Öræfajökull volcanic belt (OVB)).
See Chronology of Eruptions below: Öræfajökull 1357, Öræfajökull 1727
- Prestahnúkur, is a volcano in the Central Highlands, a part of the Langjökull glacier. It consists of rhyolite and has a small magma chamber. (Part of the North volcanic zone (NVZ) .
See Chronology of Eruptions below: Prestahnúkur 3350 BCE (?),
- Reykjanes, The "Reykjanes Volcanic System" is one of the volcanic systems on Reykjanes Peninsula, and consists of (volcanic and tectonic) fissures and faults directed mostly NE-SW. It is part of Reykjanes Volcanic Belt like the 3-6 (depending on author) other volcanic systems on Reykjanes Peninsula. [66] [67] [68] [69] No volcanic eruption had occurred for 815 years on the Peninsula until 19 March 2021 when a fissure vent appeared in Geldingadalir to the south of Fagradalsfjall mountain. [70] [71] Part of the Reykjanes volcanic zone (RVZ) . See Fagradalsfjall in index.
See Chronology of Eruptions below: Reykjanes peninsula 1206, Fagradalsfjall 2021, Fagradalsfjall 2022, Fagradalsfjall 2023
Snæfell, at 1,833 m (6,014 ft) high, is the tallest subaerial stratovolcano in Iceland. Located in the north-east part of Vatnajökull National Park, it has been dormant in the Holocene, but is known to have had repose times of over 100,000 years between eruptions. (Part of the Öræfajökull volcanic belt (OVB)).
See Chronology of Eruptions below:
- Snæfellsjökull The 700,000-year-old stratovolcano, the only large central volcano on the Snæfellsnes Peninsula, has many pyroclastic cones on its flanks, plus upper-flank craters and lower-flank basaltic lava flows. Several holocene eruptions have originated from the summit crater and have produced felsic material. [72] [73] (Part of the Snæfellsnes volcanic belt (SVB))
See Chronology of Eruptions below: Snæfellsjökull 700,000, Snæfellsjökull circa 50-350 CE
- Stóra-Eldborg undir Geitahlíð.
See Chronology of Eruptions below: Stóra-Eldborg undir Geitahlíð 400BC
Current/ongoing event - See 2023–2024 Sundhnúkur eruptions
- Sundhnúkur eruptions, near Grindavik on the Reykjanes peninsula. Eruptions from 18 December 2023. No volcanic eruption had occurred for 815 years on the Reykjanes Peninsula until 19 March 2021, - See Fagradalsfjall index)Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Sundhnúkur 2023, Sundhnúkur 2023.12.18, Sundhnúkur 2024.01.14, Sundhnúkur 2024.02.08, Sundhnúkur 2024.03.16,Sundhnúkur 2024.05.29, Sundhnúkur 2024.08.22
- Surtsey, A volcanic island located in the Vestmannaeyjar archipelago off the southern coast. It was formed in a volcanic eruption which began 130 metres (430 feet) below sea level, and reached the surface on 14 November 1963. The eruption lasted until 5 June 1967, when the island reached its maximum size of 2.7 km2 (1.0 sq mi). [74] The most recent survey (2007) shows the island's maximum elevation at 155 m (509 ft) above sea level. [75] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Surtsey 1963
- Theistareykjarbunga (Þeistareykjarbunga); Part of the North volcanic zone (EVZ) .
See Chronology of Eruptions below: Theistareykjarbunga 9500 BC, Theistareykjarbunga 6800 BC, Theistareykjarbunga 900 BC
- Þingvellir / Thingvellir. Notable for its tectonic and volcanic environment in a rift valley. [76] The Mid-Atlantic Ridge passes across the Thingvellir National Park. The continental drift between the North American and Eurasian Plates can be clearly seen in the cracks or faults and rifts which traverse the region. The largest, Almannagjá, is a significant canyon. Earthquakes are frequent in the area. [77]
- Þjórsá Lava.
See Chronology of Eruptions below: Þjórsá Lava 6700BC, Thjórsá Lava 6700BC
- Þórðarhyrna, Thordarhyrna, is one of seven [78] subglacial volcanoes beneath the Vatnajokull glacier in Iceland. There is a mechanical interaction between Thordarhyrna and Grimsvötn, despite these volcanoes being relatively far apart, [79] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Thórðarhyrna 3550 BC ± 500, Thórðarhyrna 1887-1889, Thórðarhyrna 1902-1904, Thórðarhyrna 1910
- Thórólfsfell, Þórólfsfell, a basaltic tuya in southern Iceland, east of Fljótshlíð. The upper section is made up of pillow lavas and is 574 metres above sea level. Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: [ example needed ]
- Þrándarjökull, (Thrándarjökull), a small glacier in eastern Iceland, 20 kilometres (12 mi) from Vatnajökull glacier. It has an elevation of 1,236 metres (4,055 ft). Part of the Öræfajökull volcanic belt (ÖVB) .
See Chronology of Eruptions below: [ example needed ]
- Thrihnukagigur (Thríhnákagígur), (Three Peaks Crater) is a dormant volcano in the volcanic system of Brennisteinsfjöll near Reykjavík, Iceland. [80] Covering a 3,270 square metres (35,200 sq ft) area and a depth of 213 meters (699 ft), [81] it has not erupted in the past 4000 years. [82] It opened for tourism in 2012, the only volcano in the world where visitors can take an elevator into the magma chamber. The magma that would normally fill the chamber and become sealed is believed to have drained away, revealing the rift beneath the surface. [83] Part of the Reykjanes volcanic zone (RVZ) .
See Chronology of Eruptions below: Thríhnákagígur 4,000 BP
- Tindfjallajökull is a stratovolcano in the south of Iceland. [72] It has erupted rocks of basaltic to rhyolitic composition, and a 5-km-wide caldera was formed during the eruption of the 54,000-year-old Thórsmörk Ignimbrite. It is capped by a glacier of 19 km2. [84] Its highest peak is Ýmir.
See Chronology of Eruptions below: Tindfjallajökull 54,000
- Tjörnes, Fracture Zone is a submarine volcano situated northeast of Iceland, between the fjords of Öxarfjörður and Skjálfandi. It is a series of underwater fissure vents that last erupted from 1867 to 1868. The Tjörnes Fracture Zone (TFZ) connects the North Volcanic Zone to the Kolbeinsey Ridge (KR), which is part of the Mid-Atlantic Ridge. It contains its own volcanic systems, which are smaller than those in the Mid-Iceland Belt. It is one of two major and active transform faults zones striking west-northwest in northern and southern Iceland. [85] The Tjörnes and Reykjanes Fracture Zones are found striking about 75°N to 80°W. [86]
See Chronology of Eruptions below: Tjörnes Fracture Zone 1867-68
- Tjörnes, is a peninsula situated at the northeast of Iceland, between the fjords of Öxarfjörður and Skjálfandi. Sedimentary rock known for its rich fossil record from 23 to 2.6 million years ago. (i.e. non-volcanic rock from the Miocene and Pliocene eras.) [87] [88]
- Torfajökull. a rhyolitic stratovolcano, caldera (central volcano) and complex of subglacial volcanoes, located north of Mýrdalsjökull. The 1477 eruption created the largest area of silicic extrusive rocks in Iceland. The 870 eruption, a combined bimodal eruption (rhyolite-basalt) with additional engagement of the Bárðarbunga-Veiðivötn volcanic system, has left a thin layer of easily recognized mixed tephra all over Iceland (Landnámslag). [89] This layer makes it possible to determine the exact dates of many archeological finds by so-called tephrochronology, like in the Reykjavík 871±2 museum.
See Chronology of Eruptions below: Torfajökull 870, Torfajökull 1477
- Trölladyngja, Situated in the Ódáðahraun lava field, it is the biggest Icelandic shield volcano, with a height of 1,468 metres (4,816 ft) [90] and rising almost 600 metres above the surrounding desert and lava fields. It is about 10 kilometres in diameter. Its oblong crater is about 1,200 to 1,500 metres in length, 500 metres broad, and about 100 metres deep. Most of its lava fields have flowed in a northerly direction, with one branch of it reaching the valley of Bárðardalur, a distance of roughly 100 km. (Part of the North volcanic zone (NVZ))
See Chronology of Eruptions below: Trölladyngja 1151, Trölladyngja 1961, (Note : there are claims (Trölladyngja) that the last eruption was 5,000 years ago.[ citation needed ])
- Tungnafellsjökull, a glacier and volcano in Iceland. It has an elevation of 1,523 metres (4,997 ft) and is located northwest of Vatnajökull glacier. (Part of the Mid-Iceland Belt (MIB))
See Chronology of Eruptions below: [ example needed ]
- Vatnafjöll, a basaltic fissure vent system. It is part of the same system as Hekla. More than two dozen eruptions have occurred at Vatnafjöll during the Holocene Epoch. [91] (Part of the East volcanic zone (EVZ))
See Chronology of Eruptions below: Vatnafjöll 800
- Vatnajökull; ("Glacier of Lakes", "Vatna Glacier") is the largest and most voluminous ice cap in Iceland. [92] It is in the south-east of the island, covering approximately 10% of the country. [93] The Vatnajökull glacier embraces seven identified subglacial volcanoes, of which the best-known are Grímsvötn, Bárðarbunga, and Öraefajökull. (See Grímsvötn index, Bárðarbunga index, Herðubreið index, Holuhraun index, Kverkfjöll index, Laki index, Loki-Fögrufjöll index, Öræfajökull index and Thordarhyrna index.) Vatnajökull glacier is part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Vatnajökull 900, Vatnajökull 905, Vatnajökull 940, Vatnajökull 1060, Vatnajökull 1160, Vatnajökull 1332, Vatnajökull 1477, 1480, 1655, 1681, 1702, 1706, 1716, 1717, 1725, 1766, 1823, 1872, 1876, 1985, 1996
- Vatnaöldur.
See Chronology of Eruptions below: Vatnaöldur 870;
- Veiðivötn; Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Veiðivötn 6700BC;; Veiðivötn 1200BC; Veiðivötn 940, Veiðivötn 1477.
See: Veiðivötn image in Gallery.
- Vestmannaeyjar, Westman Islands, an archipelago off the south coast. Largest island is Heimaey. [94] Part of the East volcanic zone (EVZ) .
See Chronology of Eruptions below: Stórhöfði peninsula 6,000 BP, Helgafell (volcano) 3,000 BC, Surtsey 1963, Jólnir 1963, Eldfell 1973
- Viðey, (caldera,[ citation needed ]) at Reykjavík. About two million years ago during the Pleistocene, Viðey was an active volcano with a massive caldera. [95] The remains of the caldera are much larger than the modern island itself, with the island near the caldera's center. The rest of the caldera underlies a large part of what is now Kollafjörður. [96] The underwater eruption that formed Viðey island stopped circa 9,000 years ago. (Part of the Reykjanes volcanic zone (RVZ))
See Chronology of Eruptions below: Viðey 2,600,000-9,000
- Westfjords, a large peninsula in northwestern Iceland. (A remnant of the North Atlantic Igneous Province).
See Chronology of Eruptions below: [ example needed ][ citation needed ]
Dates are approximate. Please see individual articles that may have more date detail.
Dates are approximate.(Note: First Norse settlers arrived in 870/874.) Please see individual articles that may have more date detail.
(For a detail description of the volcanic zones. See : Geological deformation of Iceland)
Iceland has several major volcanic zones surrounding the Iceland hotspot:
The East Volcanic Zone (EVZ), the central volcanoes Vonarskarð and Hágöngur, belong to the same volcanic system. [191] The southern propagating rift region of the EVZ with more tendency yo explosive eruption characteristics is known as the Southern Iceland Volcanic Zone (SIVZ). [62]
Includes: Bárðarbunga, Bláhnjúkur, Brennisteinsalda, Eldgjá, Eyjafjallajökull, Gjálp, Grímsvötn, central volcano Hágöngur (is: Hágöngur), Hekla, Katla, Lakagigar, Laki, Þjórsá Lava, Þórólfsfell, Surtsey, Thordarhyrna (Þórðarhyrna), Tindfjallajökull, Torfajökull, Vatnafjöll, several volcanoes in Vatnajökull, Vatnaöldur, Vestmannaeyjar (Westman Islands), central volcano Vonarskarð.
The Kolbeinsey Ridge is a segment of the Mid-Atlantic Ridge located to the north of Iceland in the Arctic Ocean. It is bounded to the south by the Tjörnes Fracture Zone, which connects the submarine ridge to the on-shore Northern Volcanic Zone rifting center in eastern Iceland. [48] The volcanic islands Kolbeinsey and Grímsey lie along the Kolbeinsey Ridge.
The Mid-Iceland belt (MIB) connects the East, West and North volcanic zones, across central Iceland.
North of Iceland, the Mid-Atlantic Ridge is called Kolbeinsey Ridge (KR) and is connected to the North Volcanic Zone via the Tjörnes Fracture Zone (TFZ).
Includes: Askja, Dimmuborgir, Fremrinámur, Herðubreið, Hverfjall, Kollóttadyngja, Krafla, Kverkfjöll, many volcanoes in the Mývatn district, Rauðhólar, Theistareykjarbunga, Trölladyngja
The Öræfajökull volcanic belt (ÖVB, also Öræfi volcanic belt) is an intraplate volcanic belt, connected to the Eurasian plate. [192] [193]
Includes: Öræfajökull
The Reykjanes volcanic zone (RVZ or Reykjanes volcanic belt, RVB) contains multiple fissure vent orientated volcanic systems including one with a similar name. It is the continuation of the Reykjanes Ridge (RR) (the Mid-Atlantic Ridge south of Iceland and intersects to its north-east at Hengill with the WVZ and the South Iceland seismic zone (SISZ, also known as the Reykjanes fracture zone, RFZ).
Includes: Bláfjöll, Brennisteinsfjöll, Búrfell (Hafnarfjörður), Eldborg í Bláfjöllum, Eldvörp–Svartsengi, Fagradalsfjall, Heiðin há, Helgafell (Hafnarfjörður), Hengill (also listed under WVZ), Keilir, Krýsuvík (volcanic system), Krýsuvík fires, Leitin, Rauðhólar (Reykjavík), Reykjanes volcanic system, Stóra-Eldborg undir Geitahlíð, Svartsengi Power Station, Sveifluháls, Vífilsfell, Þorbjörn (mountain)
The Snæfellsnes volcanic belt (SVB) is an intraplate volcanic belt, connected to the North American plate. [192]
It is proposed that the east–west line from the Grímsvötn volcano in the Mid-Iceland Belt (MIB) to the SVB shows the movement of the North American Plate over the Iceland hotspot. [194]
Includes: Snæfellsjökull and smaller volcanoes on Snæfellsnes, plus Helgafell.
The South Iceland Seismic Zone (SISZ) is a fracture zone, which connects the East and West Volcanic Zones. It contains its own volcanic systems, smaller than those in the Mid-Iceland Belt. The SISZ is a set of major and active transform faults striking west-northwest in southwestern Iceland, being one of two large fracture zones, associated with such transform faults, striking about 75°N to 80°W, the other being the Tjörnes Fracture Zone. [85] [86]
Includes: The towns of Selfoss, Vík, Hvolsvöllur and probably Þingvellir the old meeting place of the Alþing.
The Tjörnes Fracture Zone (TFZ) connects the North Volcanic Zone to the Kolbeinsey Ridge (KR), which is part of the Mid-Atlantic Ridge. It contains its own volcanic systems, which are smaller than those in the Mid-Iceland Belt.
It is one of two major and active transform faults zones striking west-northwest in northern and southern Iceland. [85] The Tjörnes and Reykjanes Fracture Zones are found striking about 75°N to 80°W. [86]
Includes: Geitlandsjökull, Geysir, Hengill (also listed under RFZ), Hlöðufell, Hveravellir, Skjaldbreiður, Stóra-Björnsfell, Þórisjökull. [195]
Grímsvötn, including the Skaftá eruption of 1783, is probably the most eruptive volcano system. The Lakagígar lava field alone is estimated to have produced about 15 cubic kilometres (3.6 cu mi) of lava. Grímsvötn has probably had more than 30 eruptions in the last 400 years, and produced around 55 cubic kilometres (13 cu mi) over the last 10,000 years. [1] (Part of the East volcanic zone (EVZ)) See Grímsvötn index above.
Katla has erupted 17 times in historical times, and Eldgjá seems to be part of the same system. The total volume of volcanic eruptions from Katla over the last 10,000 years is very similar to Grímsvötn. [1] (Part of the East volcanic zone (EVZ)). See Katla index above.
Hekla has erupted at least 17 times in historical times, with total volume about 7 cubic kilometres (1.7 cu mi), but around 42 cubic kilometres (10 cu mi) since the last ice age. [1] (Part of the East volcanic zone (EVZ)). See Hekla index above.
Iceland experiences frequent volcanic activity, due to its location both on the Mid-Atlantic Ridge, a divergent tectonic plate boundary, and being over a hotspot. Nearly thirty volcanoes are known to have erupted in the Holocene epoch; these include Eldgjá, source of the largest lava eruption in human history. Some of the various eruptions of lava, gas and ash have been both destructive of property and deadly to life over the years, as well as disruptive to local and European air travel.
Kverkfjöll is a potentially active central volcano, fissure swarm, and associated mountain range situated on the northern border of the glacier Vatnajökull in Iceland.
Eldgjá is a volcano and a canyon in Iceland. Eldgjá is part of the Katla volcano; it is a segment of a 40 kilometres (25 mi) long chain of volcanic craters and fissure vents that extends northeast away from Katla volcano almost to the Vatnajökull ice cap. This fissure experienced a major eruption around 939 CE, which was the largest effusive eruption in recent history. It covered about 780 square kilometres (300 sq mi) of land with 18.6 cubic kilometres (4.5 cu mi) of lava from two major lava flows.
Grímsvötn is an active volcano with a fissure system located in Vatnajökull National Park, Iceland. The central volcano is completely subglacial and located under the northwestern side of the Vatnajökull ice cap. The subglacial caldera is at 64°25′N17°20′W, at an elevation of 1,725 m (5,659 ft). Beneath the caldera is the magma chamber of the Grímsvötn volcano.
A fissure vent, also known as a volcanic fissure, eruption fissure or simply a fissure, is a linear volcanic vent through which lava erupts, usually without any explosive activity. The vent is often a few metres wide and may be many kilometres long. Fissure vents can cause large flood basalts which run first in lava channels and later in lava tubes. After some time, the eruption tends to become focused at one or more spatter cones. Small fissure vents may not be easily discernible from the air, but the crater rows or the canyons built up by some of them are.
The geology of Iceland is unique and of particular interest to geologists. Iceland lies on the divergent boundary between the Eurasian Plate and the North American Plate. It also lies above a hotspot, the Iceland plume. The plume is believed to have caused the formation of Iceland itself, the island first appearing over the ocean surface about 16 to 18 million years ago. The result is an island characterized by repeated volcanism and geothermal phenomena such as geysers.
Torfajökull is a rhyolitic stratovolcano, with a large caldera capped by a glacier of the same name and associated with a complex of subglacial volcanoes. Torfajökull last erupted in 1477 and consists of the largest area of silicic extrusive rocks in Iceland. This is now known to be due to a VEI 5 eruption 55,000 years ago.
Bárðarbunga, is an active and productive stratovolcano located under Vatnajökull in Vatnajökull National Park which is Iceland's most extensive glacier. The second highest mountain in Iceland, 2,000 metres (6,600 ft) above sea level, Bárðarbunga is also part of the Bárðarbunga-Veiðivötn volcanic system that is approximately 190 kilometres (120 mi) long and 25 kilometres (16 mi) wide.
Brennisteinsfjöll is a minor volcanic system, with crater rows and small shield volcanoes on the Reykjanes Peninsula in southwest Iceland.
Thordarhyrna is one of seven subglacial volcanoes beneath the Vatnajokull glacier in Iceland. It is a paired active central volcano with Grímsvötn, and can be classified as part of the Grímsvötn-Laki volcanic system, with common fissure swarms to the south.
The Loki-Fögrufjöll is a subglacial volcano under the Vatnajökull glacier.
Holuhraun ( ) is a lava field just north of the Vatnajökull ice cap, in the Icelandic Highlands, in Suður-Þingeyjarsýsla, Northeastern Region, Iceland. The lava field was created by fissure eruptions. After a research expedition in 1880, the lava field was initially called Kvislarhraun. Four years later, it received its current name from geologist and geographer Þorvaldur Thoroddsen.
The 2014–2015 eruption of Bárðarbunga was a Hawaiian eruption in the Bárðarbunga volcanic system in Iceland, that began on 29 August 2014, and ended on 27 February 2015. The eruption emitted large volumes of sulphur dioxide and impacted air quality in Iceland. There was no effect on flights outside of the immediate vicinity due to a lack of a significant emission of volcanic ash. The eruption took place in the lava field of Holuhraun northeast of the Bárðarbunga caldera proper.
The geological deformation of Iceland is the way that the rocks of the island of Iceland are changing due to tectonic forces. The geological deformation help to explain the location of earthquakes, volcanoes, fissures, and the shape of the island. Iceland is the largest landmass situated on an oceanic ridge. It is an elevated plateau of the sea floor, situated at the crossing of the Mid-Atlantic Ridge and the Greenland-Iceland-Scotland ridge. It lies along the oceanic divergent plate boundary of North American Plate and Eurasian Plate. The western part of Iceland sits on the North American Plate and the eastern part sits on the Eurasian Plate. The Reykjanes Ridge of the Mid-Atlantic ridge system in this region crosses the island from southwest and connects to the Kolbeinsey Ridge in the northeast.
The volcanic system of Krýsuvík, is situated in the south–west of Iceland on the Reykjanes peninsula. It is located in the middle of Reykjanes and on the divergent plate boundary of the Mid-Atlantic Ridge which traverses Iceland. It was named after the Krýsuvík area which is part of it and consists of a fissure system without a central volcano. However, there are some indications—namely, the discovery by geophysical methods of what scientists interpret as a buried caldera, combined with the well-known, vigorous hydrothermal system above it—that an embryonic central magma chamber may already exist or be actively developing.
The Reykjanes Peninsula in southwest Iceland is the continuation of the mostly submarine Reykjanes Ridge, a part of the Mid-Atlantic Ridge, on land and reaching from Esja in the north and Hengill in the east to Reykjanestá in the west. Suðurnes is an administrative unit covering part of Reykjanes Peninsula.
Keilir is a Pleistocene subglacial mound or perhaps a conical tuya on Reykjanes Peninsula in Iceland. Basal area is 0.773 km2, summit area 0.004 km2, basal width 0.99 km, summit width 0.07 km, volume 0.0362 km3.
Gjálp is a hyaloclastite ridge (tindar) in Iceland under the Vatnajökull glacier shield. Its present form resulted from an eruption series in 1996 and it is probably part of the Grímsvötn volcanic system. However, not all the scientists were of this opinion, as seismic studies are consistent with a 10 km (6.2 mi) lateral dike intrusion at about 5 km (3.1 mi) depth from Bárðarbunga being the trigger event. This does not exclude a shallower secondary intrusion from Grímsvötn being important in the subaerial eruption itself.