Pseudomathematics

Last updated
Squaring the circle: the areas of this square and this circle are both equal to p. Since 1882, it has been known that this figure cannot be constructed in a finite number of steps with an idealized compass and straightedge. Nevertheless, "proofs" of such constructions were still published even 50 years later. Squaring the circle.svg
Squaring the circle: the areas of this square and this circle are both equal to π. Since 1882, it has been known that this figure cannot be constructed in a finite number of steps with an idealized compass and straightedge. Nevertheless, "proofs" of such constructions were still published even 50 years later.

Pseudomathematics, or mathematical crankery, is a mathematics-like activity that does not adhere to the framework of rigor of formal mathematical practice. Common areas of pseudomathematics are solutions of problems proved to be unsolvable or recognized as extremely hard by experts, as well as attempts to apply mathematics to non-quantifiable areas. A person engaging in pseudomathematics is called a pseudomathematician or a pseudomath. [1] Pseudomathematics has equivalents in other scientific fields, and may overlap with other topics characterized as pseudoscience.

Contents

Pseudomathematics often contains mathematical fallacies whose executions are tied to elements of deceit rather than genuine, unsuccessful attempts at tackling a problem. Excessive pursuit of pseudomathematics can result in the practitioner being labelled a crank. Because it is based on non-mathematical principles, pseudomathematics is not related to attempts at genuine proofs that contain mistakes. Indeed, such mistakes are common in the careers of amateur mathematicians, some of whom go on to produce celebrated results. [1]

The topic of mathematical crankery has been extensively studied by mathematician Underwood Dudley, who has written several popular works about mathematical cranks and their ideas.

Examples

One common type of approach is claiming to have solved a classical problem that has been proved to be mathematically unsolvable. Common examples of this include the following constructions in Euclidean geometry—using only a compass and straightedge:

For more than 2,000 years, many people had tried and failed to find such constructions; in the 19th century, they were all proven impossible. [5] [6] :47

Another notable case were "Fermatists", who plagued mathematical institutions with requests to check their proofs of Fermat's Last Theorem. [7] [8]

Another common approach is to misapprehend standard mathematical methods, and to insist that the use or knowledge of higher mathematics is somehow cheating or misleading (e.g., the denial of Cantor's diagonal argument [9] :40ff or Gödel's incompleteness theorems). [9] :167ff

History

The term pseudomath was coined by the logician Augustus De Morgan, discoverer of De Morgan's laws, in his A Budget of Paradoxes (1872). De Morgan wrote:

The pseudomath is a person who handles mathematics as the monkey handled the razor. The creature tried to shave himself as he had seen his master do; but, not having any notion of the angle at which the razor was to be held, he cut his own throat. He never tried a second time, poor animal! but the pseudomath keeps on at his work, proclaims himself clean-shaved, and all the rest of the world hairy. [10]

De Morgan named James Smith as an example of a pseudomath who claimed to have proved that π is exactly 3+1/8. [1] Of Smith, De Morgan wrote: "He is beyond a doubt the ablest head at unreasoning, and the greatest hand at writing it, of all who have tried in our day to attach their names to an error." [10] The term pseudomath was adopted later by Tobias Dantzig. [11] Dantzig observed:

With the advent of modern times, there was an unprecedented increase in pseudomathematical activity. During the 18th century, all scientific academies of Europe saw themselves besieged by circle-squarers, trisectors, duplicators, and perpetuum mobile designers, loudly clamoring for recognition of their epoch-making achievements. In the second half of that century, the nuisance had become so unbearable that, one by one, the academies were forced to discontinue the examination of the proposed solutions. [11]

The term pseudomathematics has been applied to attempts in mental and social sciences to quantify the effects of what is typically considered to be qualitative. [12] More recently, the same term has been applied to creationist attempts to refute the theory of evolution, by way of spurious arguments purportedly based in probability or complexity theory, such as intelligent design proponent William Dembski's concept of specified complexity. [13] [14]

See also

Related Research Articles

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

<span class="mw-page-title-main">History of geometry</span> Historical development of geometry

Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).

In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry.

<span class="mw-page-title-main">Straightedge and compass construction</span> Method of drawing geometric objects

In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Doubling the cube</span> Ancient geometric construction problem

Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools.

<span class="mw-page-title-main">Angle trisection</span> Construction of an angle equal to one third a given angle

Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass.

Underwood Dudley is an American mathematician and writer. His popular works include several books describing crank mathematics by pseudomathematicians who incorrectly believe they have squared the circle or done other impossible things.

<span class="mw-page-title-main">Squaring the circle</span> Problem of constructing equal-area shapes

Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square with the area of a given circle by using only a finite number of steps with a compass and straightedge. The difficulty of the problem raised the question of whether specified axioms of Euclidean geometry concerning the existence of lines and circles implied the existence of such a square.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Tomahawk (geometry)</span> Tool for trisecting angles

The tomahawk is a tool in geometry for angle trisection, the problem of splitting an angle into three equal parts. The boundaries of its shape include a semicircle and two line segments, arranged in a way that resembles a tomahawk, a Native American axe. The same tool has also been called the shoemaker's knife, but that name is more commonly used in geometry to refer to a different shape, the arbelos.

In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative proof, proof of an impossibility theorem, or negative result. Proofs of impossibility often are the resolutions to decades or centuries of work attempting to find a solution, eventually proving that there is no solution. Proving that something is impossible is usually much harder than the opposite task, as it is often necessary to develop a proof that works in general, rather than to just show a particular example. Impossibility theorems are usually expressible as negative existential propositions or universal propositions in logic.

<span class="mw-page-title-main">Indiana Pi Bill</span> 1897 attempt to define by legislation a method of squaring the circle

The Indiana Pi Bill is the popular name for bill #246 of the 1897 sitting of the Indiana General Assembly, one of the most notorious attempts to establish mathematical truth by legislative fiat. Despite its name, the main result claimed by the bill is a method to square the circle, although it does imply various incorrect values of the mathematical constant π, the ratio of the circumference of a circle to its diameter. The bill, written by a physician who was an amateur mathematician, never became law due to the intervention of Prof. C. A. Waldo of Purdue University, who happened to be present in the legislature on the day it went up for a vote.

<span class="mw-page-title-main">Nicomedes (mathematician)</span> Ancient Greek mathematician (c. 280–210 BC)

Nicomedes was an ancient Greek mathematician.

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

The following is a timeline of key developments of geometry:

Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry which come into play.

Mathematical Cranks is a book on pseudomathematics and the cranks who create it, written by Underwood Dudley. It was published by the Mathematical Association of America in their MAA Spectrum book series in 1992 (ISBN 0-88385-507-0).

<span class="mw-page-title-main">Quadratrix of Hippias</span> Curve where spinning and moving lines cross

The quadratrix or trisectrix of Hippias is a curve which is created by a uniform motion. It is one of the oldest examples for a kinematic curve. Its discovery is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem. Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle.

The Ancient Tradition of Geometric Problems is a book on ancient Greek mathematics, focusing on three problems now known to be impossible if one uses only the straightedge and compass constructions favored by the Greek mathematicians: squaring the circle, doubling the cube, and trisecting the angle. It was written by Wilbur Knorr (1945–1997), a historian of mathematics, and published in 1986 by Birkhäuser. Dover Publications reprinted it in 1993.

References

  1. 1 2 3 Lynch, Peter. "Maths discoveries by amateurs and distractions by cranks". The Irish Times. Retrieved 2019-12-11.
  2. Dudley, Underwood (1983). "What To Do When the Trisector Comes" (PDF). The Mathematical Intelligencer. 5 (1): 20–25. doi:10.1007/bf03023502. S2CID   120170131.
  3. Schaaf, William L. (1973). A Bibliography of Recreational Mathematics, Volume 3. National Council of Teachers of Mathematics. p. 161. Pseudomath. A term coined by Augustus De Morgan to identify amateur or self-styled mathematicians, particularly circle-squarers, angle-trisectors, and cube-duplicators, although it can be extended to include those who deny the validity of non-Euclidean geometries. The typical pseudomath has but little mathematical training and insight, is not interested in the results of orthodox mathematics, has complete faith in his own capabilities, and resents the indifference of professional mathematicians.
  4. Johnson, George (1999-02-09). "Genius or Gibberish? The Strange World of the Math Crank". The New York Times . Retrieved 2019-12-21.
  5. Wantzel, P M L (1837). "Recherches sur les moyens de reconnaître si un problème de Géométrie peut se résoudre avec la règle et le compas". Journal de Mathématiques Pures et Appliquées. 1. 2: 366–372.
  6. Bold, Benjamin (1982) [1969]. Famous Problems of Geometry and How to Solve Them . Dover Publications.
  7. Konrad Jacobs, Invitation to Mathematics, 1992, p. 7
  8. Underwood Dudley, Mathematical Cranks 2019, p. 133
  9. 1 2 Dudley, Underwood (1992). Mathematical Cranks. Mathematical Association of America. ISBN   0-88385-507-0.
  10. 1 2 De Morgan, Augustus (1915). A Budget of Paradoxes (2nd ed.). Chicago: The Open Court Publishing Co.
  11. 1 2 Dantzig, Tobias (1954). "The Pseudomath". The Scientific Monthly . 79 (2): 113–117. Bibcode:1954SciMo..79..113D. JSTOR   20921.
  12. Johnson, H. M. (1936). "Pseudo-Mathematics in the Mental and Social Sciences". The American Journal of Psychology. 48 (2): 342–351. doi:10.2307/1415754. ISSN   0002-9556. JSTOR   1415754. S2CID   146915476.
  13. Elsberry, Wesley; Shallit, Jeffrey (2011). "Information theory, evolutionary computation, and Dembski's "complex specified information"". Synthese. 178 (2): 237–270. CiteSeerX   10.1.1.318.2863 . doi:10.1007/s11229-009-9542-8. S2CID   1846063.
  14. Rosenhouse, Jason (2001). "How Anti-Evolutionists Abuse Mathematics" (PDF). The Mathematical Intelligencer. 23: 3–8.
  15. "Why Does 0.999… = 1?".

Further reading