Ytterbium(III) acetate

Last updated
Ytterbium(III) acetate
Ytterbium(III) acetate tetrahydrate.jpg
Names
Other names
  • Ytterbium acetate
  • Ytterbium triacetate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.040.109 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 244-137-6
PubChem CID
  • InChI=1S/3C2H4O2.Yb/c3*1-2(3)4;/h3*1H3,(H,3,4);/q;;;+3/p-3
    Key: OSCVBYCJUSOYPN-UHFFFAOYSA-K
  • CC(=O)[O-].CC(=O)[O-].CC(=O)[O-].[Yb+3]
Properties
Yb(CH3COO)3
Appearancecrystal
soluble
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501
Related compounds
Other anions
Ytterbium(III) oxide
Ytterbium(III) hydroxide
Ytterbium(III) carbonate
Other cations
Lutetium(III) acetate
Thulium(III) acetate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ytterbium(III) acetate is an inorganic salt of ytterbium and acetic acid, with a chemical formula of Yb(CH3COO)3. It has colorless crystals that are soluble in water and can form hydrates. [2] [3]

Contents

Physical properties

Ytterbium can form crystals and it is easily soluble in water. Its hydrates are in the form of Yb(CH3COO)3·nH2O where n= 1, 4, 6. [2] [3]

Applications

Ytterbium acetate can be used as a raw material for the synthesis of upconversion luminescent materials [4] ;it can also be used as a catalyst for some specific organic reactions. [5]

Related Research Articles

<span class="mw-page-title-main">Lutetium</span> Chemical element with atomic number 71 (Lu)

Lutetium is a chemical element; it has symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earth elements; it can also be classified as the first element of the 6th-period transition metals.

<span class="mw-page-title-main">Ytterbium</span> Chemical element with atomic number 70 (Yb)

Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.

<span class="mw-page-title-main">Ytterbium(III) oxide</span> Chemical compound

Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It occurs naturally in trace amounts in the mineral gadolinite. It was first isolated from this in 1878 by Jean Charles Galissard de Marignac.

<span class="mw-page-title-main">Copper(II) acetate</span> Chemical compound

Copper(II) acetate, also referred to as cupric acetate, is the chemical compound with the formula Cu(OAc)2 where AcO is acetate (CH
3
CO
2
). The hydrated derivative, Cu2(OAc)4(H2O)2, which contains one molecule of water for each copper atom, is available commercially. Anhydrous copper(II) acetate is a dark green crystalline solid, whereas Cu2(OAc)4(H2O)2 is more bluish-green. Since ancient times, copper acetates of some form have been used as fungicides and green pigments. Today, copper acetates are used as reagents for the synthesis of various inorganic and organic compounds. Copper acetate, like all copper compounds, emits a blue-green glow in a flame.

<span class="mw-page-title-main">Calcium acetate</span> Chemical compound

Calcium acetate is a chemical compound which is a calcium salt of acetic acid. It has the formula Ca(C2H3O2)2. Its standard name is calcium acetate, while calcium ethanoate is the systematic name. An older name is acetate of lime. The anhydrous form is very hygroscopic; therefore the monohydrate (Ca(CH3COO)2•H2O) is the common form.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

<span class="mw-page-title-main">Ytterbium(III) nitrate</span> Chemical compound

Ytterbium(III) nitrate is an inorganic compound, a salt of ytterbium and nitric acid with the chemical formula Yb(NO3)3. The compound forms colorless crystals, dissolves in water, and also forms crystalline hydrates.

<span class="mw-page-title-main">Neodymium(III) acetate</span> Compound of neodymium

Neodymium(III) acetate is an inorganic salt composed of a neodymium atom trication and three acetate groups as anions where neodymium exhibits the +3 oxidation state. It has a chemical formula of Nd(CH3COO)3 although it can be informally referred to as NdAc because Ac is an informal symbol for acetate. It commonly occurs as a light purple powder.

<span class="mw-page-title-main">Neodymium compounds</span> Chemical compounds with at least one neodymium atom

Neodymium compounds are compounds formed by the lanthanide metal neodymium (Nd). In these compounds, neodymium generally exhibits the +3 oxidation state, such as NdCl3, Nd2(SO4)3 and Nd(CH3COO)3. Compounds with neodymium in the +2 oxidation state are also known, such as NdCl2 and NdI2. Some neodymium compounds have colors that vary based upon the type of lighting.

<span class="mw-page-title-main">Europium(III) acetate</span> Chemical compound

Europium(III) acetate is an inorganic salt of europium and acetic acid with the chemical formula of Eu(CH3COO)3. In this compound, europium exhibits the +3 oxidation state. It can exist in the anhydrous form, sesquihydrate and tetrahydrate. Its hydrate molecule is a dimer.

<span class="mw-page-title-main">Lutetium(III) acetate</span> Compound of lutetium

Lutetium(III) acetate is the acetate salt of lutetium with the chemical formula of Lu(CH3COO)3.

<span class="mw-page-title-main">Holmium acetate</span> Compound of holmium

Holmium acetate is the acetate salt of holmium, with a chemical formula of Ho(CH3COO)3 as well as at least one hydrate.

<span class="mw-page-title-main">Erbium(III) acetate</span> Chemical compound

Erbium(III) acetate is the acetate salt of erbium, with the proposed chemical formula of Er(CH3COO)3. It can be used to synthesize some optical materials.

<span class="mw-page-title-main">Europium compounds</span> Chemical compounds

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Cerium(III) acetate</span> Chemical compound

Cerium acetate is an inorganic compound with the chemical formula of Ce(CH3COO)3. It is a white powder that is soluble in water. Its 1.5 hydrate loses water at 133°C to obtain an amorphous anhydrous form, and the amorphous phase changes to crystal at 212°C, and phase changes again at 286°C.

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

Ytterbium compounds are chemical compounds that contain the element ytterbium (Yb). The chemical behavior of ytterbium is similar to that of the rest of the lanthanides. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like europium, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).

<span class="mw-page-title-main">Scandium acetate</span> Chemical compound

Scandium acetate is an compound, with the chemical formula of Sc(CH3COO)3. It exists in the anhydrous and the hydrate forms. It can be obtained by reacting scandium hydroxide or scandium oxide with acetic acid. It is a colorless, water-soluble solid. It decomposes into scandium oxide at high temperature. It can be used to prepare other scandium-containing materials.

<span class="mw-page-title-main">Gadolinium acetate</span> Chemical compound

Gadolinium acetate is the acetate salt of the lanthanide element gadolinium, with the chemical formula Gd(CH3COO)3. It is a colorless crystal that is soluble in water and can form a hydrate. Its tetrahydrate has ground state ferromagnetism.

<span class="mw-page-title-main">Lanthanum acetate</span> Chemical compound

Lanthanum acetate is an inorganic compound, a salt of lanthanum with acetic acid with the chemical formula La(CH3CO2)3. According to X-ray crystallography, anhydrous lanthanum acetate is a coordination polymer. Each La(III) center is nine-coordinate, with two bidentate acetate ligands and the remaining sites occupied by oxygens provided by bridging acetate ligands. The praseodymium and holmium compounds are isostructural.

References

  1. "Ytterbium(3+) acetate". pubchem.ncbi.nlm.nih.gov. Retrieved 17 May 2022.
  2. 1 2 Редкол.: Никольский Б.П. и др., ed. (1971). Справочник химика. Vol. 2 (3-е изд., испр ed.). Л.: Химия.
  3. 1 2 CRC Handbook of Chemistry and Physics (89th ed.). Taylor and Francis Group, LLC. 2008.
  4. Joseph K. Marsh (1943-01-01). "4. Rare-earth metal amalgams. Part III. The separation of ytterbium from its neighbours". Journal of the Chemical Society (Resumed): 8–10. doi:10.1039/JR9430000008. ISSN   0368-1769. Archived from the original on 2018-06-11. Retrieved 2019-02-01.
  5. Tan, Xuefeng; Wang, Yue; Li, Jianguo; Hu, Xiaojia; Wang, Gongying. Methoxycarbonylation of Isophorondiamine Catalyzed by Ytterbium Acetate. Shiyou Huagong (Petrochemical Technology), 2012, 41 (9): 1011-1016. doi : 10.3969/j.issn.1000-8144.2012.09.005