Gauss's law

Last updated

Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the electric field outside (r > R) and inside (r < R) of a charged sphere is being calculated (see Wikiversity). Maxwell integral Gauss sphere.svg
Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the electric field outside (r > R) and inside (r < R) of a charged sphere is being calculated (see Wikiversity).

In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the distribution of electric charge to the resulting electric field.

Contents

Definition

In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.

The law was first [1] formulated by Joseph-Louis Lagrange in 1773, [2] followed by Carl Friedrich Gauss in 1835, [3] both in the context of the attraction of ellipsoids. It is one of Maxwell's equations, which forms the basis of classical electrodynamics. [note 1] Gauss's law can be used to derive Coulomb's law, [4] and vice versa.

Qualitative description

In words, Gauss's law states:

The net electric flux through any hypothetical closed surface is equal to 1/ε0 times the net electric charge enclosed within that closed surface. The closed surface is also referred to as Gaussian surface. [5]

Gauss's law has a close mathematical similarity with a number of laws in other areas of physics, such as Gauss's law for magnetism and Gauss's law for gravity. In fact, any inverse-square law can be formulated in a way similar to Gauss's law: for example, Gauss's law itself is essentially equivalent to the Coulomb's law, and Gauss's law for gravity is essentially equivalent to the Newton's law of gravity, both of which are inverse-square laws.

The law can be expressed mathematically using vector calculus in integral form and differential form; both are equivalent since they are related by the divergence theorem, also called Gauss's theorem. Each of these forms in turn can also be expressed two ways: In terms of a relation between the electric field E and the total electric charge, or in terms of the electric displacement field D and the free electric charge. [6]

Equation involving the E field

Gauss's law can be stated using either the electric field E or the electric displacement field D. This section shows some of the forms with E; the form with D is below, as are other forms with E.

Integral form

Electric flux through an arbitrary surface is proportional to the total charge enclosed by the surface. Electric-flux-surface-example.svg
Electric flux through an arbitrary surface is proportional to the total charge enclosed by the surface.
No charge is enclosed by the sphere. Electric flux through its surface is zero. Electric-flux-no-charge-inside.svg
No charge is enclosed by the sphere. Electric flux through its surface is zero.

Gauss's law may be expressed as: [6]

where ΦE is the electric flux through a closed surface S enclosing any volume V, Q is the total charge enclosed within V, and ε0 is the electric constant. The electric flux ΦE is defined as a surface integral of the electric field:

OiintLaTeX.svg

where E is the electric field, dA is a vector representing an infinitesimal element of area of the surface, [note 2] and · represents the dot product of two vectors.

In a curved spacetime, the flux of an electromagnetic field through a closed surface is expressed as

OiintLaTeX.svg

where is the speed of light; denotes the time components of the electromagnetic tensor; is the determinant of metric tensor; is an orthonormal element of the two-dimensional surface surrounding the charge ; indices and do not match each other. [8]

Since the flux is defined as an integral of the electric field, this expression of Gauss's law is called the integral form.

A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation. The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux pa *E, by Gauss's law equals pa *s/e0. Thus, s = e0E. Gauss's law - surface charge - boundary condition on D.svg
A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation. The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa ·E, by Gauss's law equals πa ·σ/ε0. Thus, σ = ε0E.

In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or numerically. The electric field is then calculated as the potential's negative gradient. Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero inside the conductor.

The reverse problem, when the electric charge distribution is known and the electric field must be computed, is much more difficult. The total flux through a given surface gives little information about the electric field, and can go in and out of the surface in arbitrarily complicated patterns.

An exception is if there is some symmetry in the problem, which mandates that the electric field passes through the surface in a uniform way. Then, if the total flux is known, the field itself can be deduced at every point. Common examples of symmetries which lend themselves to Gauss's law include: cylindrical symmetry, planar symmetry, and spherical symmetry. See the article Gaussian surface for examples where these symmetries are exploited to compute electric fields.

Differential form

By the divergence theorem, Gauss's law can alternatively be written in the differential form:

where ∇ · E is the divergence of the electric field, ε0 is the vacuum permittivity and ρ is the total volume charge density (charge per unit volume).

Equivalence of integral and differential forms

The integral and differential forms are mathematically equivalent, by the divergence theorem. Here is the argument more specifically.

Outline of proof

The integral form of Gauss's law is:

OiintLaTeX.svg

for any closed surface S containing charge Q. By the divergence theorem, this equation is equivalent to:

for any volume V containing charge Q. By the relation between charge and charge density, this equation is equivalent to: for any volume V. In order for this equation to be simultaneously true for every possible volume V, it is necessary (and sufficient) for the integrands to be equal everywhere. Therefore, this equation is equivalent to:

Thus the integral and differential forms are equivalent.

Equation involving the D field

Free, bound, and total charge

The electric charge that arises in the simplest textbook situations would be classified as "free charge"—for example, the charge which is transferred in static electricity, or the charge on a capacitor plate. In contrast, "bound charge" arises only in the context of dielectric (polarizable) materials. (All materials are polarizable to some extent.) When such materials are placed in an external electric field, the electrons remain bound to their respective atoms, but shift a microscopic distance in response to the field, so that they're more on one side of the atom than the other. All these microscopic displacements add up to give a macroscopic net charge distribution, and this constitutes the "bound charge".

Although microscopically all charge is fundamentally the same, there are often practical reasons for wanting to treat bound charge differently from free charge. The result is that the more fundamental Gauss's law, in terms of E (above), is sometimes put into the equivalent form below, which is in terms of D and the free charge only.

Integral form

This formulation of Gauss's law states the total charge form:

where ΦD is the D-field flux through a surface S which encloses a volume V, and Qfree is the free charge contained in V. The flux ΦD is defined analogously to the flux ΦE of the electric field E through S:

OiintLaTeX.svg

Differential form

The differential form of Gauss's law, involving free charge only, states:

where ∇ · D is the divergence of the electric displacement field, and ρfree is the free electric charge density.

Equivalence of total and free charge statements

Proof that the formulations of Gauss's law in terms of free charge are equivalent to the formulations involving total charge.

In this proof, we will show that the equation is equivalent to the equation Note that we are only dealing with the differential forms, not the integral forms, but that is sufficient since the differential and integral forms are equivalent in each case, by the divergence theorem.

We introduce the polarization density P, which has the following relation to E and D: and the following relation to the bound charge: Now, consider the three equations: The key insight is that the sum of the first two equations is the third equation. This completes the proof: The first equation is true by definition, and therefore the second equation is true if and only if the third equation is true. So the second and third equations are equivalent, which is what we wanted to prove.

Equation for linear materials

In homogeneous, isotropic, nondispersive, linear materials, there is a simple relationship between E and D:

where ε is the permittivity of the material. For the case of vacuum (aka free space), ε = ε0. Under these circumstances, Gauss's law modifies to

for the integral form, and

for the differential form.

Relation to Coulomb's law

Deriving Gauss's law from Coulomb's law

[ citation needed ]

Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone, since Coulomb's law gives the electric field due to an individual, electrostatic point charge only. However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the electric field obeys the superposition principle. The superposition principle states that the resulting field is the vector sum of fields generated by each particle (or the integral, if the charges are distributed smoothly in space).

Outline of proof

Coulomb's law states that the electric field due to a stationary point charge is: where

Using the expression from Coulomb's law, we get the total field at r by using an integral to sum the field at r due to the infinitesimal charge at each other point s in space, to give where ρ is the charge density. If we take the divergence of both sides of this equation with respect to r, and use the known theorem [9]

where δ(r) is the Dirac delta function, the result is

Using the "sifting property" of the Dirac delta function, we arrive at which is the differential form of Gauss's law, as desired.

Since Coulomb's law only applies to stationary charges, there is no reason to expect Gauss's law to hold for moving charges based on this derivation alone. In fact, Gauss's law does hold for moving charges, and, in this respect, Gauss's law is more general than Coulomb's law.

Proof (without Dirac Delta)

Let be a bounded open set, and be the electric field, with a continuous function (density of charge).

It is true for all that .

Consider now a compact set having a piecewise smooth boundary such that . It follows that and so, for the divergence theorem:

But because ,

for the argument above ( and then )

Therefore the flux through a closed surface generated by some charge density outside (the surface) is null.

Now consider , and as the sphere centered in having as radius (it exists because is an open set).

Let and be the electric field created inside and outside the sphere respectively. Then,

, and

The last equality follows by observing that , and the argument above.

The RHS is the electric flux generated by a charged sphere, and so:

with

Where the last equality follows by the mean value theorem for integrals. Using the squeeze theorem and the continuity of , one arrives at:

Deriving Coulomb's law from Gauss's law

Strictly speaking, Coulomb's law cannot be derived from Gauss's law alone, since Gauss's law does not give any information regarding the curl of E (see Helmholtz decomposition and Faraday's law). However, Coulomb's law can be proven from Gauss's law if it is assumed, in addition, that the electric field from a point charge is spherically symmetric (this assumption, like Coulomb's law itself, is exactly true if the charge is stationary, and approximately true if the charge is in motion).

Outline of proof

Taking S in the integral form of Gauss's law to be a spherical surface of radius r, centered at the point charge Q, we have

By the assumption of spherical symmetry, the integrand is a constant which can be taken out of the integral. The result is where is a unit vector pointing radially away from the charge. Again by spherical symmetry, E points in the radial direction, and so we get which is essentially equivalent to Coulomb's law. Thus the inverse-square law dependence of the electric field in Coulomb's law follows from Gauss's law.

See also

Notes

  1. The other three of Maxwell's equations are: Gauss's law for magnetism, Faraday's law of induction, and Ampère's law with Maxwell's correction
  2. More specifically, the infinitesimal area is thought of as planar and with area dN. The vector dR is normal to this area element and has magnitude dA. [7]

Citations

  1. Duhem, Pierre (1891). "4". Leçons sur l'électricité et le magnétisme[Lessons on electricity and magnetism] (in French). Vol. 1. Paris Gauthier-Villars. pp. 22–23. OCLC   1048238688. OL   23310906M . Shows that Lagrange has priority over Gauss. Others after Gauss discovered "Gauss's Law", too.
  2. Lagrange, Joseph-Louis (1869) [1776]. Serret, Joseph-Alfred; Darboux, Jean-Gaston (eds.). "Sur l'attraction des sphéroïdes elliptiques" [On the attraction of elliptical spheroids]. Œuvres de Lagrange: Mémoires extraits des recueils de l'Académie royale des sciences et belles-lettres de Berlin (in French). Gauthier-Villars: 619.
  3. Gauss, Carl Friedrich (1877). "Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo nova tractata" [The theory of the attraction of homogeneous spheroidal elliptic bodies treated by a new method]. In Schering, Ernst Christian Julius; Brendel, Martin (eds.). Carl Friedrich Gauss Werke [Works of Carl Friedrich Gauss] (in Latin and German). Vol. 5 (2nd ed.). Gedruckt in der Dieterichschen Universitätsdruckerei (W.F. Kaestner). pp. 2–22. Gauss mentions Newton's Principia proposition XCI regarding finding the force exerted by a sphere on a point anywhere along an axis passing through the sphere.
  4. Halliday, David; Resnick, Robert (1970). Fundamentals of Physics. John Wiley & Sons. pp. 452–453.
  5. Serway, Raymond A. (1996). Physics for Scientists and Engineers with Modern Physics (4th ed.). p. 687.
  6. 1 2 Grant, I. S.; Phillips, W. R. (2008). Electromagnetism. Manchester Physics (2nd ed.). John Wiley & Sons. ISBN   978-0-471-92712-9.
  7. Matthews, Paul (1998). Vector Calculus. Springer. ISBN   3-540-76180-2.
  8. Fedosin, Sergey G. (2019). "On the Covariant Representation of Integral Equations of the Electromagnetic Field". Progress in Electromagnetics Research C. 96: 109–122. arXiv: 1911.11138 . Bibcode:2019arXiv191111138F. doi:10.2528/PIERC19062902. S2CID   208095922.
  9. See, for example, Griffiths, David J. (2013). Introduction to Electrodynamics (4th ed.). Prentice Hall. p. 50. or Jackson, John David (1999). Classical Electrodynamics (3rd ed.). John Wiley & Sons. p. 35.

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Electric field</span> Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. The electric field of a single charge describes their capacity to exert such forces on another charged object. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Thus, we may informally say that the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, Electromagnetism is one of the four fundamental interactions of nature.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Electric potential</span> Line integral of the electric field

Electric potential is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as where the vector r is the relative position between the charges. This interaction complicates the theoretical treatment of the fluid. For example, a naive quantum mechanical calculation of the ground-state energy density yields infinity, which is unreasonable. The difficulty lies in the fact that even though the Coulomb force diminishes with distance as 1/r2, the average number of particles at each distance r is proportional to r2, assuming the fluid is fairly isotropic. As a result, a charge fluctuation at any one point has non-negligible effects at large distances.

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson who published it in 1823.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

<span class="mw-page-title-main">Polarization density</span> Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.

<span class="mw-page-title-main">Magnetic vector potential</span> Integral of the magnetic field

In classical electromagnetism, magnetic vector potential is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

<span class="mw-page-title-main">Electric displacement field</span> Vector field related to displacement current and flux density

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in topics such as the capacitance of a material, as well as the response of dielectrics to an electric field, and how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

<span class="mw-page-title-main">Electric potential energy</span> Potential energy that results from conservative Coulomb forces

Electric potential energy is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may be said to have electric potential energy by virtue of either its own electric charge or its relative position to other electrically charged objects.

In plasma physics, the Vlasov equation is a differential equation describing time evolution of the distribution function of collisionless plasma consisting of charged particles with long-range interaction, such as the Coulomb interaction. The equation was first suggested for the description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph. The Vlasov equation, combined with Landau kinetic equation describe collisional plasma.

In physics, charge conservation is the principle, of experimental nature, that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law, implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the volume minus the amount of charge flowing out of the volume. In essence, charge conservation is an accounting relationship between the amount of charge in a region and the flow of charge into and out of that region, given by a continuity equation between charge density and current density .

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Coulomb's law</span> Fundamental physical law of electromagnetism

Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.

References