Gauss's law

Last updated

Gauss's law in its integral form is most useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the electric field outside (r>R) and inside (r<R) of a charged sphere is being calculated (see Wikiversity). Maxwell integral Gauss sphere.svg
Gauss's law in its integral form is most useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the electric field outside (r>R) and inside (r<R) of a charged sphere is being calculated (see Wikiversity).

In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed. Even though the law alone is insufficient to determine the electric field across a surface enclosing any charge distribution, this may be possible in cases where symmetry mandates uniformity of the field. Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge.

Contents

The law was first [1] formulated by Joseph-Louis Lagrange in 1773, [2] followed by Carl Friedrich Gauss in 1835, [3] both in the context of the attraction of ellipsoids. It is one of Maxwell's four equations, which forms the basis of classical electrodynamics. [note 1] Gauss's law can be used to derive Coulomb's law, [4] and vice versa.

Qualitative description

In words, Gauss's law states that

The net electric flux through any hypothetical closed surface is equal to times the net electric charge within that closed surface. [5]

Gauss's law has a close mathematical similarity with a number of laws in other areas of physics, such as Gauss's law for magnetism and Gauss's law for gravity. In fact, any inverse-square law can be formulated in a way similar to Gauss's law: for example, Gauss's law itself is essentially equivalent to the inverse-square Coulomb's law, and Gauss's law for gravity is essentially equivalent to the inverse-square Newton's law of gravity.

The law can be expressed mathematically using vector calculus in integral form and differential form; both are equivalent since they are related by the divergence theorem, also called Gauss's theorem. Each of these forms in turn can also be expressed two ways: In terms of a relation between the electric field E and the total electric charge, or in terms of the electric displacement field D and the free electric charge. [6]

Equation involving the E field

Gauss's law can be stated using either the electric field E or the electric displacement field D. This section shows some of the forms with E; the form with D is below, as are other forms with E.

Integral form

Electric flux through an arbitrary surface is proportional to the total charge enclosed by the surface. Electric-flux-surface-example.svg
Electric flux through an arbitrary surface is proportional to the total charge enclosed by the surface.
No charge is enclosed by the sphere. Electric flux through its surface is zero. Electric-flux-no-charge-inside.svg
No charge is enclosed by the sphere. Electric flux through its surface is zero.

Gauss's law may be expressed as: [6]

where ΦE is the electric flux through a closed surface S enclosing any volume V, Q is the total charge enclosed within V, and ε0 is the electric constant. The electric flux ΦE is defined as a surface integral of the electric field:

OiintLaTeX.svg

where E is the electric field, dA is a vector representing an infinitesimal element of area of the surface, [note 2] and · represents the dot product of two vectors.

In a curved space-time, the flux of an electromagnetic field through a closed surface is expressed as

OiintLaTeX.svg

where is the speed of light; denotes the time components of the electromagnetic tensor; is the determinant of metric tensor; is an orthonormal element of the two-dimensional surface surrounding the charge ; indices and do not match each other. [8]

Since the flux is defined as an integral of the electric field, this expression of Gauss's law is called the integral form.

A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation. The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux pa [?]E, by Gauss's law equals pa [?]s/e0. Thus, s=e0E. Gauss's law - surface charge - boundary condition on D.svg
A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation. The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa ⋅E, by Gauss's law equals πa ⋅σ/ε0. Thus, σ=ε0E.

In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or numerically. The electric field is then calculated as the potential's negative gradient. Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero inside the conductor.

The reverse problem, when the electric charge distribution is known and the electric field must be computed, is much more difficult. The total flux through a given surface gives little information about the electric field, and can go in and out of the surface in arbitrarily complicated patterns.

An exception is if there is some symmetry in the problem, which mandates that the electric field passes through the surface in a uniform way. Then, if the total flux is known, the field itself can be deduced at every point. Common examples of symmetries which lend themselves to Gauss's law include: cylindrical symmetry, planar symmetry, and spherical symmetry. See the article Gaussian surface for examples where these symmetries are exploited to compute electric fields.

Differential form

By the divergence theorem, Gauss's law can alternatively be written in the differential form:

where ∇ · E is the divergence of the electric field, ε0 is the vacuum permittivity, is the relative permittivity, and ρ is the volume charge density (charge per unit volume).

Equivalence of integral and differential forms

The integral and differential forms are mathematically equivalent, by the divergence theorem. Here is the argument more specifically.

Equation involving the D field

Free, bound, and total charge

The electric charge that arises in the simplest textbook situations would be classified as "free charge"—for example, the charge which is transferred in static electricity, or the charge on a capacitor plate. In contrast, "bound charge" arises only in the context of dielectric (polarizable) materials. (All materials are polarizable to some extent.) When such materials are placed in an external electric field, the electrons remain bound to their respective atoms, but shift a microscopic distance in response to the field, so that they're more on one side of the atom than the other. All these microscopic displacements add up to give a macroscopic net charge distribution, and this constitutes the "bound charge".

Although microscopically all charge is fundamentally the same, there are often practical reasons for wanting to treat bound charge differently from free charge. The result is that the more fundamental Gauss's law, in terms of E (above), is sometimes put into the equivalent form below, which is in terms of D and the free charge only.

Integral form

This formulation of Gauss's law states the total charge form:

where ΦD is the D-field flux through a surface S which encloses a volume V, and Qfree is the free charge contained in V. The flux ΦD is defined analogously to the flux ΦE of the electric field E through S:

OiintLaTeX.svg

Differential form

The differential form of Gauss's law, involving free charge only, states:

where ∇ · D is the divergence of the electric displacement field, and ρfree is the free electric charge density.

Equivalence of total and free charge statements

Equation for linear materials

In homogeneous, isotropic, nondispersive, linear materials, there is a simple relationship between E and D:

where ε is the permittivity of the material. For the case of vacuum (aka free space), ε = ε0. Under these circumstances, Gauss's law modifies to

for the integral form, and

for the differential form.

Interpretations

In terms of fields of force

Gauss's theorem can be interpreted in terms of the lines of force of the field as follows:

The flux through a closed surface is dependent upon both the magnitude and direction of the electric field lines penetrating the surface. In general a positive flux is defined by these lines leaving the surface and negative flux by lines entering this surface. This results in positive charges causing a positive flux and negative charges creating a negative flux. These electric field lines will extend to infinite decreasing in strength by a factor of one over the distance from the source of the charge squared. The larger the number of field lines emanating from a charge the larger the magnitude of the charge is, and the closer together the field lines are the greater the magnitude of the electric field. This has the natural result of the electric field becoming weaker as one moves away from a charged particle, but the surface area also increases so that the net electric field exiting this particle will stay the same. In other words the closed integral of the electric field and the dot product of the derivative of the area will equal the net charge enclosed divided by permittivity of free space.

Relation to Coulomb's law

Deriving Gauss's law from Coulomb's law

Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone, since Coulomb's law gives the electric field due to an individual point charge only. However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the electric field obeys the superposition principle. The superposition principle says that the resulting field is the vector sum of fields generated by each particle (or the integral, if the charges are distributed smoothly in space).

Since Coulomb's law only applies to stationary charges, there is no reason to expect Gauss's law to hold for moving charges based on this derivation alone. In fact, Gauss's law does hold for moving charges, and in this respect Gauss's law is more general than Coulomb's law.

Deriving Coulomb's law from Gauss's law

Strictly speaking, Coulomb's law cannot be derived from Gauss's law alone, since Gauss's law does not give any information regarding the curl of E (see Helmholtz decomposition and Faraday's law). However, Coulomb's law can be proven from Gauss's law if it is assumed, in addition, that the electric field from a point charge is spherically symmetric (this assumption, like Coulomb's law itself, is exactly true if the charge is stationary, and approximately true if the charge is in motion).

See also

Notes

  1. The other three of Maxwell's equations are: Gauss's law for magnetism, Faraday's law of induction, and Ampère's law with Maxwell's correction
  2. More specifically, the infinitesimal area is thought of as planar and with area dN. The vector dR is normal to this area element and has magnitude dA. [7]

Citations

  1. Duhem, Pierre. Leçons sur l'électricité et le magnétisme (in French). vol. 1, ch. 4, p. 22–23. shows that Lagrange has priority over Gauss. Others after Gauss discovered "Gauss' Law", too.
  2. Lagrange, Joseph-Louis (1773). "Sur l'attraction des sphéroïdes elliptiques". Mémoires de l'Académie de Berlin (in French): 125.
  3. Gauss, Carl Friedrich (1877). Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo nova tractata (in Latin). (Gauss, Werke, vol. V, p. 1). Gauss mentions Newton's Principia proposition XCI regarding finding the force exerted by a sphere on a point anywhere along an axis passing through the sphere.
  4. Halliday, David; Resnick, Robert (1970). Fundamentals of Physics. John Wiley & Sons. pp. 452–453.
  5. Serway, Raymond A. (1996). Physics for Scientists and Engineers with Modern Physics (4th ed.). p. 687.
  6. 1 2 Grant, I. S.; Phillips, W. R. (2008). Electromagnetism. Manchester Physics (2nd ed.). John Wiley & Sons. ISBN   978-0-471-92712-9.
  7. Matthews, Paul (1998). Vector Calculus. Springer. ISBN   3-540-76180-2.
  8. Fedosin, Sergey G. (2019). "On the Covariant Representation of Integral Equations of the Electromagnetic Field". Progress In Electromagnetics Research C. 96: 109–122. arXiv: 1911.11138 . Bibcode:2019arXiv191111138F. doi:10.2528/PIERC19062902.
  9. See, for example, Griffiths, David J. (2013). Introduction to Electrodynamics (4th ed.). Prentice Hall. p. 50.

Related Research Articles

Maxwells equations Equations describing classical electromagnetism

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.

Electric field Physical field surrounding an electric charge

An electric field is the physical field that surrounds electrically-charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges, or from time-varying magnetic fields. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.

Flux Concept in natural science and mathematics

Flux describes any effect that appears to pass or travel through a surface or substance. A flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.

Permittivity Measure of the electric polarizability of a dielectric

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

Electric potential Line integral of the electric field

The electric potential is the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in an electric field with negligible acceleration of the test charge to avoid producing kinetic energy or radiation by test charge. Typically, the reference point is the Earth or a point at infinity, although any point can be used. More precisely it is the energy per unit charge for a small test charge that does not disturb significantly the field and the charge distribution producing the field under consideration.

Magnetic flux

In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber, and the CGS unit is the maxwell. Magnetic flux is usually measured with a fluxmeter, which contains measuring coils and electronics, that evaluates the change of voltage in the measuring coils to calculate the measurement of magnetic flux.

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.

Poissons equation Expression frequently encountered in mathematical physics, generalization of Laplaces equation.

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

Ampères circuital law

In classical electromagnetism, Ampère's circuital law relates the integrated magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force" In 1865 he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law, which is one of Maxwell's equations which form the basis of classical electromagnetism.

Electrostatics Study of stationary electric charge

Electrostatics is a branch of physics that studies electric charges at rest.

Classical electromagnetism Branch of theoretical physics that studies consequences of the electromagnetic forces between electric charges and currents

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

Displacement current Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

Polarization density Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. The electric dipole moment induced per unit volume of the dielectric material is called the electric polarization of the dielectric.

Magnetic vector potential Integral of the magnetic field

Magnetic vector potential, A, is the vector quantity in classical electromagnetism defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the effects of free and bound charge within materials. "D" stands for "displacement", as in the related concept of displacement current in dielectrics. In free space, the electric displacement field is equivalent to flux density, a concept that lends understanding of Gauss's law. In the International System of Units (SI), it is expressed in units of coulomb per meter square (C⋅m−2).

Electric flux Measure of electric field through surface

In electromagnetism, electric flux is the measure of the electric field through a given surface, although an electric field in itself cannot flow. It is a way of describing the electric field strength at any distance from the charge causing the field.

Gaussian surface

A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, the electric field, or magnetic field. It is an arbitrary closed surface S = ∂V used in conjunction with Gauss's law for the corresponding field by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of gravitational mass as the source of the gravitational field or amount of electric charge as the source of the electrostatic field, or vice versa: calculate the fields for the source distribution.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

Gausss law for magnetism Foundational law of classical magnetism

In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole.

Coulombs law Fundamental physical law of electromagnetism

Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point, as it made it possible to discuss the quantity of electric charge in a meaningful way.

References