Noether's theorem

Last updated

First page of Emmy Noether's article "Invariante Variationsprobleme" (1918), where she proved her theorem Noether theorem 1st page.png
First page of Emmy Noether's article "Invariante Variationsprobleme" (1918), where she proved her theorem

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems (see Noether's second theorem) published by mathematician Emmy Noether in 1918. [1] The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

Contents

Noether's theorem is used in theoretical physics and the calculus of variations. It reveals the fundamental relation between the symmetries of a physical system and the conservation laws. It also made modern theoretical physicists much more focused on symmetries of physical systems. A generalization of the formulations on constants of motion in Lagrangian and Hamiltonian mechanics (developed in 1788 and 1833, respectively), it does not apply to systems that cannot be modeled with a Lagrangian alone (e.g., systems with a Rayleigh dissipation function). In particular, dissipative systems with continuous symmetries need not have a corresponding conservation law.[ citation needed ]

Basic illustrations and background

As an illustration, if a physical system behaves the same regardless of how it is oriented in space (that is, it's invariant), its Lagrangian is symmetric under continuous rotation: from this symmetry, Noether's theorem dictates that the angular momentum of the system be conserved, as a consequence of its laws of motion. [2] :126 The physical system itself need not be symmetric; a jagged asteroid tumbling in space conserves angular momentum despite its asymmetry. It is the laws of its motion that are symmetric.

As another example, if a physical process exhibits the same outcomes regardless of place or time, then its Lagrangian is symmetric under continuous translations in space and time respectively: by Noether's theorem, these symmetries account for the conservation laws of linear momentum and energy within this system, respectively. [3] :23 [4] :261

Noether's theorem is important, both because of the insight it gives into conservation laws, and also as a practical calculational tool. It allows investigators to determine the conserved quantities (invariants) from the observed symmetries of a physical system. Conversely, it allows researchers to consider whole classes of hypothetical Lagrangians with given invariants, to describe a physical system. [2] :127 As an illustration, suppose that a physical theory is proposed which conserves a quantity X. A researcher can calculate the types of Lagrangians that conserve X through a continuous symmetry. Due to Noether's theorem, the properties of these Lagrangians provide further criteria to understand the implications and judge the fitness of the new theory.

There are numerous versions of Noether's theorem, with varying degrees of generality. There are natural quantum counterparts of this theorem, expressed in the Ward–Takahashi identities. Generalizations of Noether's theorem to superspaces also exist. [5]

Informal statement of the theorem

All fine technical points aside, Noether's theorem can be stated informally:

If a system has a continuous symmetry property, then there are corresponding quantities whose values are conserved in time. [6]

A more sophisticated version of the theorem involving fields states that:

To every continuous symmetry generated by local actions there corresponds a conserved current and vice versa.

The word "symmetry" in the above statement refers more precisely to the covariance of the form that a physical law takes with respect to a one-dimensional Lie group of transformations satisfying certain technical criteria. The conservation law of a physical quantity is usually expressed as a continuity equation.

The formal proof of the theorem utilizes the condition of invariance to derive an expression for a current associated with a conserved physical quantity. In modern terminology, the conserved quantity is called the Noether charge, while the flow carrying that charge is called the Noether current. The Noether current is defined up to a solenoidal (divergenceless) vector field.

In the context of gravitation, Felix Klein's statement of Noether's theorem for action I stipulates for the invariants: [7]

If an integral I is invariant under a continuous group Gρ with ρ parameters, then ρ linearly independent combinations of the Lagrangian expressions are divergences.

Brief illustration and overview of the concept

Plot illustrating Noether's theorem for a coordinate-wise symmetry Noether theorem scheme.png
Plot illustrating Noether's theorem for a coordinate-wise symmetry

The main idea behind Noether's theorem is most easily illustrated by a system with one coordinate and a continuous symmetry (gray arrows on the diagram).

Consider any trajectory (bold on the diagram) that satisfies the system's laws of motion. That is, the action governing this system is stationary on this trajectory, i.e. does not change under any local variation of the trajectory. In particular it would not change under a variation that applies the symmetry flow on a time segment [t0, t1] and is motionless outside that segment. To keep the trajectory continuous, we use "buffering" periods of small time to transition between the segments gradually.

The total change in the action now comprises changes brought by every interval in play. Parts, where variation itself vanishes, i.e outside bring no . The middle part does not change the action either, because its transformation is a symmetry and thus preserves the Lagrangian and the action . The only remaining parts are the "buffering" pieces. In these regions both the coordinate and velocity change, but changes by , and the change in the coordinate is negligible by comparison since the time span of the buffering is small (taken to the limit of 0), so . So the regions contribute mostly through their "slanting" .

That changes the Lagrangian by , which integrates to

These last terms, evaluated around the endpoints and , should cancel each other in order to make the total change in the action be zero, as would be expected if the trajectory is a solution. That is meaning the quantity is conserved, which is the conclusion of Noether's theorem. For instance if pure translations of by a constant are the symmetry, then the conserved quantity becomes just , the canonical momentum.

More general cases follow the same idea:

Historical context

A conservation law states that some quantity X in the mathematical description of a system's evolution remains constant throughout its motion – it is an invariant. Mathematically, the rate of change of X (its derivative with respect to time) is zero,

Such quantities are said to be conserved; they are often called constants of motion (although motion per se need not be involved, just evolution in time). For example, if the energy of a system is conserved, its energy is invariant at all times, which imposes a constraint on the system's motion and may help in solving for it. Aside from insights that such constants of motion give into the nature of a system, they are a useful calculational tool; for example, an approximate solution can be corrected by finding the nearest state that satisfies the suitable conservation laws.

The earliest constants of motion discovered were momentum and kinetic energy, which were proposed in the 17th century by René Descartes and Gottfried Leibniz on the basis of collision experiments, and refined by subsequent researchers. Isaac Newton was the first to enunciate the conservation of momentum in its modern form, and showed that it was a consequence of Newton's laws of motion. According to general relativity, the conservation laws of linear momentum, energy and angular momentum are only exactly true globally when expressed in terms of the sum of the stress–energy tensor (non-gravitational stress–energy) and the Landau–Lifshitz stress–energy–momentum pseudotensor (gravitational stress–energy). The local conservation of non-gravitational linear momentum and energy in a free-falling reference frame is expressed by the vanishing of the covariant divergence of the stress–energy tensor. Another important conserved quantity, discovered in studies of the celestial mechanics of astronomical bodies, is the Laplace–Runge–Lenz vector.

In the late 18th and early 19th centuries, physicists developed more systematic methods for discovering invariants. A major advance came in 1788 with the development of Lagrangian mechanics, which is related to the principle of least action. In this approach, the state of the system can be described by any type of generalized coordinates q; the laws of motion need not be expressed in a Cartesian coordinate system, as was customary in Newtonian mechanics. The action is defined as the time integral I of a function known as the Lagrangian  L

where the dot over q signifies the rate of change of the coordinates q,

Hamilton's principle states that the physical path q(t)—the one actually taken by the system—is a path for which infinitesimal variations in that path cause no change in I, at least up to first order. This principle results in the Euler–Lagrange equations,

Thus, if one of the coordinates, say qk, does not appear in the Lagrangian, the right-hand side of the equation is zero, and the left-hand side requires that

where the momentum

is conserved throughout the motion (on the physical path).

Thus, the absence of the ignorable coordinate qk from the Lagrangian implies that the Lagrangian is unaffected by changes or transformations of qk; the Lagrangian is invariant, and is said to exhibit a symmetry under such transformations. This is the seed idea generalized in Noether's theorem.

Several alternative methods for finding conserved quantities were developed in the 19th century, especially by William Rowan Hamilton. For example, he developed a theory of canonical transformations which allowed changing coordinates so that some coordinates disappeared from the Lagrangian, as above, resulting in conserved canonical momenta. Another approach, and perhaps the most efficient for finding conserved quantities, is the Hamilton–Jacobi equation.

Emmy Noether's work on the invariance theorem began in 1915 when she was helping Felix Klein and David Hilbert with their work related to Albert Einstein's theory of general relativity [8] :31 By March 1918 she had most of the key ideas for the paper which would be published later in the year. [9] :81

Mathematical expression

Simple form using perturbations

The essence of Noether's theorem is generalizing the notion of ignorable coordinates.

One can assume that the Lagrangian L defined above is invariant under small perturbations (warpings) of the time variable t and the generalized coordinates q. One may write

where the perturbations δt and δq are both small, but variable. For generality, assume there are (say) N such symmetry transformations of the action, i.e. transformations leaving the action unchanged; labelled by an index r = 1, 2, 3, ..., N.

Then the resultant perturbation can be written as a linear sum of the individual types of perturbations,

where εr are infinitesimal parameter coefficients corresponding to each:

For translations, Qr is a constant with units of length; for rotations, it is an expression linear in the components of q, and the parameters make up an angle.

Using these definitions, Noether showed that the N quantities

are conserved (constants of motion).

Examples

I. Time invariance

For illustration, consider a Lagrangian that does not depend on time, i.e., that is invariant (symmetric) under changes tt + δt, without any change in the coordinates q. In this case, N = 1, T = 1 and Q = 0; the corresponding conserved quantity is the total energy H [10] :401

II. Translational invariance

Consider a Lagrangian which does not depend on an ("ignorable", as above) coordinate qk; so it is invariant (symmetric) under changes qkqk + δqk. In that case, N = 1, T = 0, and Qk = 1; the conserved quantity is the corresponding linear momentum pk [10] :403–404

In special and general relativity, these two conservation laws can be expressed either globally (as it is done above), or locally as a continuity equation. The global versions can be united into a single global conservation law: the conservation of the energy-momentum 4-vector. The local versions of energy and momentum conservation (at any point in space-time) can also be united, into the conservation of a quantity defined locally at the space-time point: the stress–energy tensor [11] :592(this will be derived in the next section).

III. Rotational invariance

The conservation of the angular momentum L = r × p is analogous to its linear momentum counterpart. [10] :404–405 It is assumed that the symmetry of the Lagrangian is rotational, i.e., that the Lagrangian does not depend on the absolute orientation of the physical system in space. For concreteness, assume that the Lagrangian does not change under small rotations of an angle δθ about an axis n; such a rotation transforms the Cartesian coordinates by the equation

Since time is not being transformed, T = 0, and N = 1. Taking δθ as the ε parameter and the Cartesian coordinates r as the generalized coordinates q, the corresponding Q variables are given by

Then Noether's theorem states that the following quantity is conserved,

In other words, the component of the angular momentum L along the n axis is conserved. And if n is arbitrary, i.e., if the system is insensitive to any rotation, then every component of L is conserved; in short, angular momentum is conserved.

Field theory version

Although useful in its own right, the version of Noether's theorem just given is a special case of the general version derived in 1915. To give the flavor of the general theorem, a version of Noether's theorem for continuous fields in four-dimensional space–time is now given. Since field theory problems are more common in modern physics than mechanics problems, this field theory version is the most commonly used (or most often implemented) version of Noether's theorem.

Let there be a set of differentiable fields defined over all space and time; for example, the temperature would be representative of such a field, being a number defined at every place and time. The principle of least action can be applied to such fields, but the action is now an integral over space and time

(the theorem can be further generalized to the case where the Lagrangian depends on up to the nth derivative, and can also be formulated using jet bundles).

A continuous transformation of the fields can be written infinitesimally as

where is in general a function that may depend on both and . The condition for to generate a physical symmetry is that the action is left invariant. This will certainly be true if the Lagrangian density is left invariant, but it will also be true if the Lagrangian changes by a divergence,

since the integral of a divergence becomes a boundary term according to the divergence theorem. A system described by a given action might have multiple independent symmetries of this type, indexed by so the most general symmetry transformation would be written as

with the consequence

For such systems, Noether's theorem states that there are conserved current densities

(where the dot product is understood to contract the field indices, not the index or index).

In such cases, the conservation law is expressed in a four-dimensional way

which expresses the idea that the amount of a conserved quantity within a sphere cannot change unless some of it flows out of the sphere. For example, electric charge is conserved; the amount of charge within a sphere cannot change unless some of the charge leaves the sphere.

For illustration, consider a physical system of fields that behaves the same under translations in time and space, as considered above; in other words, is constant in its third argument. In that case, N = 4, one for each dimension of space and time. An infinitesimal translation in space, (with denoting the Kronecker delta), affects the fields as : that is, relabelling the coordinates is equivalent to leaving the coordinates in place while translating the field itself, which in turn is equivalent to transforming the field by replacing its value at each point with the value at the point "behind" it which would be mapped onto by the infinitesimal displacement under consideration. Since this is infinitesimal, we may write this transformation as

The Lagrangian density transforms in the same way, , so

and thus Noether's theorem corresponds [11] :592 to the conservation law for the stress–energy tensor Tμν, where we have used in place of . To wit, by using the expression given earlier, and collecting the four conserved currents (one for each ) into a tensor , Noether's theorem gives

with

(we relabelled as at an intermediate step to avoid conflict). (However, the obtained in this way may differ from the symmetric tensor used as the source term in general relativity; see Canonical stress–energy tensor.)

The conservation of electric charge, by contrast, can be derived by considering Ψ linear in the fields φ rather than in the derivatives. [11] :593–594 In quantum mechanics, the probability amplitude ψ(x) of finding a particle at a point x is a complex field φ, because it ascribes a complex number to every point in space and time. The probability amplitude itself is physically unmeasurable; only the probability p = |ψ|2 can be inferred from a set of measurements. Therefore, the system is invariant under transformations of the ψ field and its complex conjugate field ψ* that leave |ψ|2 unchanged, such as

a complex rotation. In the limit when the phase θ becomes infinitesimally small, δθ, it may be taken as the parameter ε, while the Ψ are equal to and −*, respectively. A specific example is the Klein–Gordon equation, the relativistically correct version of the Schrödinger equation for spinless particles, which has the Lagrangian density

In this case, Noether's theorem states that the conserved (∂  j = 0) current equals

which, when multiplied by the charge on that species of particle, equals the electric current density due to that type of particle. This "gauge invariance" was first noted by Hermann Weyl, and is one of the prototype gauge symmetries of physics.

Derivations

One independent variable

Consider the simplest case, a system with one independent variable, time. Suppose the dependent variables q are such that the action integral

is invariant under brief infinitesimal variations in the dependent variables. In other words, they satisfy the Euler–Lagrange equations

And suppose that the integral is invariant under a continuous symmetry. Mathematically such a symmetry is represented as a flow, φ, which acts on the variables as follows

where ε is a real variable indicating the amount of flow, and T is a real constant (which could be zero) indicating how much the flow shifts time.

The action integral flows to

which may be regarded as a function of ε. Calculating the derivative at ε = 0 and using Leibniz's rule, we get

Notice that the Euler–Lagrange equations imply

Substituting this into the previous equation, one gets

Again using the Euler–Lagrange equations we get

Substituting this into the previous equation, one gets

From which one can see that

is a constant of the motion, i.e., it is a conserved quantity. Since φ[q, 0] = q, we get and so the conserved quantity simplifies to

To avoid excessive complication of the formulas, this derivation assumed that the flow does not change as time passes. The same result can be obtained in the more general case.

Field-theoretic derivation

Noether's theorem may also be derived for tensor fields where the index A ranges over the various components of the various tensor fields. These field quantities are functions defined over a four-dimensional space whose points are labeled by coordinates xμ where the index μ ranges over time (μ = 0) and three spatial dimensions (μ = 1, 2, 3). These four coordinates are the independent variables; and the values of the fields at each event are the dependent variables. Under an infinitesimal transformation, the variation in the coordinates is written

whereas the transformation of the field variables is expressed as

By this definition, the field variations result from two factors: intrinsic changes in the field themselves and changes in coordinates, since the transformed field αA depends on the transformed coordinates ξμ. To isolate the intrinsic changes, the field variation at a single point xμ may be defined

If the coordinates are changed, the boundary of the region of space–time over which the Lagrangian is being integrated also changes; the original boundary and its transformed version are denoted as Ω and Ω’, respectively.

Noether's theorem begins with the assumption that a specific transformation of the coordinates and field variables does not change the action, which is defined as the integral of the Lagrangian density over the given region of spacetime. Expressed mathematically, this assumption may be written as

where the comma subscript indicates a partial derivative with respect to the coordinate(s) that follows the comma, e.g.

Since ξ is a dummy variable of integration, and since the change in the boundary Ω is infinitesimal by assumption, the two integrals may be combined using the four-dimensional version of the divergence theorem into the following form

The difference in Lagrangians can be written to first-order in the infinitesimal variations as

However, because the variations are defined at the same point as described above, the variation and the derivative can be done in reverse order; they commute

Using the Euler–Lagrange field equations

the difference in Lagrangians can be written neatly as

Thus, the change in the action can be written as

Since this holds for any region Ω, the integrand must be zero

For any combination of the various symmetry transformations, the perturbation can be written

where is the Lie derivative of in the Xμ direction. When is a scalar or ,

These equations imply that the field variation taken at one point equals

Differentiating the above divergence with respect to ε at ε = 0 and changing the sign yields the conservation law

where the conserved current equals

Manifold/fiber bundle derivation

Suppose we have an n-dimensional oriented Riemannian manifold, M and a target manifold T. Let be the configuration space of smooth functions from M to T. (More generally, we can have smooth sections of a fiber bundle over M.)

Examples of this M in physics include:

Now suppose there is a functional

called the action. (It takes values into , rather than ; this is for physical reasons, and is unimportant for this proof.)

To get to the usual version of Noether's theorem, we need additional restrictions on the action. We assume is the integral over M of a function

called the Lagrangian density, depending on , its derivative and the position. In other words, for in

Suppose we are given boundary conditions, i.e., a specification of the value of at the boundary if M is compact, or some limit on as x approaches ∞. Then the subspace of consisting of functions such that all functional derivatives of at are zero, that is:

and that satisfies the given boundary conditions, is the subspace of on shell solutions. (See principle of stationary action)

Now, suppose we have an infinitesimal transformation on , generated by a functional derivation, Q such that

for all compact submanifolds N or in other words,

for all x, where we set

If this holds on shell and off shell, we say Q generates an off-shell symmetry. If this only holds on shell, we say Q generates an on-shell symmetry. Then, we say Q is a generator of a one parameter symmetry Lie group.

Now, for any N, because of the Euler–Lagrange theorem, on shell (and only on-shell), we have

Since this is true for any N, we have

But this is the continuity equation for the current defined by: [12]

which is called the Noether current associated with the symmetry. The continuity equation tells us that if we integrate this current over a space-like slice, we get a conserved quantity called the Noether charge (provided, of course, if M is noncompact, the currents fall off sufficiently fast at infinity).

Comments

Noether's theorem is an on shell theorem: it relies on use of the equations of motion—the classical path. It reflects the relation between the boundary conditions and the variational principle. Assuming no boundary terms in the action, Noether's theorem implies that

The quantum analogs of Noether's theorem involving expectation values (e.g., ) probing off shell quantities as well are the Ward–Takahashi identities.

Generalization to Lie algebras

Suppose we have two symmetry derivations Q1 and Q2. Then, [Q1, Q2] is also a symmetry derivation. Let us see this explicitly. Let us say and

Then, where f12 = Q1[f2μ]  Q2[f1μ]. So,

This shows we can extend Noether's theorem to larger Lie algebras in a natural way.

Generalization of the proof

This applies to any local symmetry derivation Q satisfying QS  0, and also to more general local functional differentiable actions, including ones where the Lagrangian depends on higher derivatives of the fields. Let ε be any arbitrary smooth function of the spacetime (or time) manifold such that the closure of its support is disjoint from the boundary. ε is a test function. Then, because of the variational principle (which does not apply to the boundary, by the way), the derivation distribution q generated by q[ε][Φ(x)] = ε(x)Q[Φ(x)] satisfies q[ε][S]  0 for every ε, or more compactly, q(x)[S] ≈ 0 for all x not on the boundary (but remember that q(x) is a shorthand for a derivation distribution, not a derivation parametrized by x in general). This is the generalization of Noether's theorem.

To see how the generalization is related to the version given above, assume that the action is the spacetime integral of a Lagrangian that only depends on and its first derivatives. Also, assume

Then,

for all .

More generally, if the Lagrangian depends on higher derivatives, then

Examples

Example 1: Conservation of energy

Looking at the specific case of a Newtonian particle of mass m, coordinate x, moving under the influence of a potential V, coordinatized by time t. The action, S, is:

The first term in the brackets is the kinetic energy of the particle, while the second is its potential energy. Consider the generator of time translations Q = d/dt. In other words, . The coordinate x has an explicit dependence on time, whilst V does not; consequently:

so we can set

Then,

The right hand side is the energy, and Noether's theorem states that (i.e. the principle of conservation of energy is a consequence of invariance under time translations).

More generally, if the Lagrangian does not depend explicitly on time, the quantity

(called the Hamiltonian) is conserved.

Example 2: Conservation of center of momentum

Still considering 1-dimensional time, let

for Newtonian particles where the potential only depends pairwise upon the relative displacement.

For , consider the generator of Galilean transformations (i.e. a change in the frame of reference). In other words,

And

This has the form of so we can set

Then,

where is the total momentum, M is the total mass and is the center of mass. Noether's theorem states:

Example 3: Conformal transformation

Both examples 1 and 2 are over a 1-dimensional manifold (time). An example involving spacetime is a conformal transformation of a massless real scalar field with a quartic potential in (3 + 1)-Minkowski spacetime.

For Q, consider the generator of a spacetime rescaling. In other words,

The second term on the right hand side is due to the "conformal weight" of . And

This has the form of

(where we have performed a change of dummy indices) so set

Then

Noether's theorem states that (as one may explicitly check by substituting the Euler–Lagrange equations into the left hand side).

If one tries to find the Ward–Takahashi analog of this equation, one runs into a problem because of anomalies.

Applications

Application of Noether's theorem allows physicists to gain powerful insights into any general theory in physics, by just analyzing the various transformations that would make the form of the laws involved invariant. For example:

In quantum field theory, the analog to Noether's theorem, the Ward–Takahashi identity, yields further conservation laws, such as the conservation of electric charge from the invariance with respect to a change in the phase factor of the complex field of the charged particle and the associated gauge of the electric potential and vector potential.

The Noether charge is also used in calculating the entropy of stationary black holes. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. In physics, often only the decomposition of sufficiently smooth, rapidly decaying vector fields in three dimensions is discussed. It is named after Hermann von Helmholtz.

In physics, particularly in quantum field theory, configurations of a physical system that satisfy classical equations of motion are called on the mass shell ; while those that do not are called off the mass shell.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

The exponential mechanism is a technique for designing differentially private algorithms. It was developed by Frank McSherry and Kunal Talwar in 2007. Their work was recognized as a co-winner of the 2009 PET Award for Outstanding Research in Privacy Enhancing Technologies.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant under these transformations.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

In analytical mechanics and quantum field theory, minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher multipole moments of the charge distribution. This minimal coupling is in contrast to, for example, Pauli coupling, which includes the magnetic moment of an electron directly in the Lagrangian.

<span class="mw-page-title-main">Two-body Dirac equations</span> Quantum field theory equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation. In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

Computational anatomy (CA) is the study of shape and form in medical imaging. The study of deformable shapes in CA rely on high-dimensional diffeomorphism groups which generate orbits of the form . In CA, this orbit is in general considered a smooth Riemannian manifold since at every point of the manifold there is an inner product inducing the norm on the tangent space that varies smoothly from point to point in the manifold of shapes . This is generated by viewing the group of diffeomorphisms as a Riemannian manifold with , associated to the tangent space at . This induces the norm and metric on the orbit under the action from the group of diffeomorphisms.

References

  1. Noether, E. (1918). "Invariante Variationsprobleme". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. 1918: 235–257.
  2. 1 2 José, Jorge V.; Saletan, Eugene J. (1998). Classical Dynamics: A Contemporary Approach. Cambridge [England]: Cambridge University Press. ISBN   978-1-139-64890-5. OCLC   857769535.
  3. Hand, Louis N.; Finch, Janet D. (1998). Analytical Mechanics. Cambridge: Cambridge University Press. ISBN   0-521-57327-0. OCLC   37903527.
  4. Thornton, Stephen T.; Marion, Jerry B. (2004). Classical dynamics of particles and systems (5th ed.). Boston, MA: Brooks/Cole, Cengage Learning. ISBN   978-0-534-40896-1. OCLC   759172774.
  5. De Azcárraga, J.a.; Lukierski, J.; Vindel, P. (1986-07-01). "Superfields and canonical methods in superspace". Modern Physics Letters A. 01 (4): 293–302. Bibcode:1986MPLA....1..293D. doi:10.1142/S0217732386000385. ISSN   0217-7323.
  6. Thompson, W.J. (1994). Angular Momentum: an illustrated guide to rotational symmetries for physical systems. Vol. 1. Wiley. p. 5. ISBN   0-471-55264-X.
  7. Nina Byers (1998) "E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws". In Proceedings of a Symposium on the Heritage of Emmy Noether, held on 2–4 December 1996, at the Bar-Ilan University, Israel, Appendix B.
  8. Dick, Auguste (1981). Emmy Noether 1882–1935. Boston, MA: Birkhäuser Boston. doi:10.1007/978-1-4684-0535-4. ISBN   978-1-4684-0537-8.
  9. Rowe, David E. (2021). Emmy Noether – Mathematician Extraordinaire. Cham: Springer International Publishing. doi:10.1007/978-3-030-63810-8. ISBN   978-3-030-63809-2.
  10. 1 2 3 Lanczos, C. (1970). The Variational Principles of Mechanics (4th ed.). New York: Dover Publications. ISBN   0-486-65067-7.
  11. 1 2 3 Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). Reading, MA: Addison-Wesley. ISBN   0-201-02918-9.
  12. Michael E. Peskin; Daniel V. Schroeder (1995). An Introduction to Quantum Field Theory. Basic Books. p. 18. ISBN   0-201-50397-2.
  13. Iyer, Vivek; Wald, Robert M. (15 October 1995). "A comparison of Noether charge and Euclidean methods for Computing the Entropy of Stationary Black Holes". Physical Review D . 52 (8): 4430–4439. arXiv: gr-qc/9503052 . Bibcode:1995PhRvD..52.4430I. doi:10.1103/PhysRevD.52.4430. PMID   10019667. S2CID   2588285.{{cite journal}}: CS1 maint: date and year (link)

Further reading