Planing is a manufacturing process of material removal in which the workpiece reciprocates against a stationary cutting tool producing a plane or sculpted surface. Planing is analogous to shaping. The main difference between these two processes is that in shaping the tool reciprocates across the stationary workpiece. Planing motion is the opposite of shaping. Both planing and shaping are rapidly being replaced by milling.
The mechanism used for this process is known as a planer. The size of the planer is determined by the largest workpiece that can be machined on it. The cutting tools are usually carbide tipped or made of high speed steel and resemble those used in facing and turning.
In shaping, the tool is brought into position with the workpiece. The tool then repeatedly moves in a straight line while the workpiece is incrementally fed into the line of motion of the tool, this produces a flat, smooth, and sculpted surface. For shaped pieces the tool reciprocates across the stationary workpiece. The tools are usually tilted or lifted after each stroke. This is done hydraulically or manually in order to prevent the tool surface from chipping when the workpiece travels back across.
Planing can be used to produce flat surfaces, as well as cross-sections with grooves and notches, are produced along the length of workpiece. Shaping is basically the same as planing, except the workpiece is usually smaller, and it is the tool that moves and not the workpiece. Planing can be used to produce horizontal, vertical, or inclined flat surfaces on workpieces usually too large for shaping. Shaping is used not only for flat surfaces, but also for external or internal surfaces (either horizontal or inclined). Curved and irregular surfaces can also be produced by using special attachments
Flat, angular, and contoured surfaces are made by horizontal shapers. Concerning shaping, the device that holds the piece being worked on has a very heavy movable jaw to withstand cutting forces. The size of the planer needed is determined by the workpiece. Depending on the size of the workpiece many clamps and supporting devices may be used to hold it on the planer.
The tools for shaping/planing are usually made of high speed steel or carbide tipped. Except for some slight angle difference, cutting tools resemble those used in facing and turning. Some advantages of using single-point cutting tools over multipoint tools is that they are more easily sharpened and fabricated. Internal shapes can be made by using a special extension tool.
Although the most common material to be planed or shaped is wood, there are planers and shaping machines capable of processing anything from metal pieces to plastic objects.
The router is a power tool with a flat base and a rotating blade extending past the base. The spindle may be driven by an electric motor or by a pneumatic motor. It routs an area in hard material, such as wood or plastic. Routers are used most often in woodworking, especially cabinetry. They may be handheld or affixed to router tables. Some woodworkers consider the router one of the most versatile power tools.
A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.
A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of helical.
Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.
Machining is a process in which a metal is cut into a desired final shape and size by a controlled material-removal process. The processes that have this common theme, controlled material removal, are today collectively known as subtractive manufacturing, in distinction from processes of controlled material addition, which are known as additive manufacturing. Exactly what the "controlled" part of the definition implies can vary, but it almost always implies the use of machine tools.
Drill bits are cutting tools used to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.
A hand plane is a tool for shaping wood using muscle power to force the cutting blade over the wood surface. Some rotary power planers are motorized power tools used for the same types of larger tasks, but are unsuitable for fine scale planing where a miniature hand plane is used.
A file is a tool used to remove fine amounts of material from a workpiece. It is common in woodworking, metalworking, and other similar trade and hobby tasks. Most are hand tools, made of a case hardened steel bar of rectangular, square, triangular, or round cross-section, with one or more surfaces cut with sharp, generally parallel teeth. A narrow, pointed tang is common at one end, to which a handle may be fitted.
Broaching is a machining process that uses a toothed tool, called a broach, to remove material. There are two main types of broaching: linear and rotary. In linear broaching, which is the more common process, the broach is run linearly against a surface of the workpiece to effect the cut. Linear broaches are used in a broaching machine, which is also sometimes shortened to broach. In rotary broaching, the broach is rotated and pressed into the workpiece to cut an axisymmetric shape. A rotary broach is used in a lathe or screw machine. In both processes the cut is performed in one pass of the broach, which makes it very efficient.
The phrase speeds and feeds or feeds and speeds refers to two separate velocities in machine tool practice, cutting speed and feed rate. They are often considered as a pair because of their combined effect on the cutting process. Each, however, can also be considered and analyzed in its own right.
A tool bit is a non-rotary cutting tool used in metal lathes, shapers, and planers. Such cutters are also often referred to by the set-phrase name of single-point cutting tool, as distinguished from other cutting tools such as a saw or water jet cutter. The cutting edge is ground to suit a particular machining operation and may be resharpened or reshaped as needed. The ground tool bit is held rigidly by a tool holder while it is cutting.
A grinding dresser or wheel dresser is a tool to dress the surface of a grinding wheel. Grinding dressers are used to return a wheel to its original round shape, to expose fresh grains for renewed cutting action, or to make a different profile on the wheel's edge.
Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.
Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.
A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.
In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.
Grinding is an abrasive machining process that uses a grinding wheel as the cutting tool.
Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive grinding stone or grinding wheel against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but can also improve the surface finish.
Arbor milling is a cutting process which removes material via a multi-toothed cutter. An arbor mill is a type of milling machine characterized by its ability to rapidly remove material from a variety of materials. This milling process is not only rapid but also versatile.
Surface grinding is used to produce a smooth finish on flat surfaces. It is a widely used abrasive machining process in which a spinning wheel covered in rough particles cuts chips of metallic or nonmetallic substance from a workpiece, making a face of it flat or smooth.
[1] Todd, Robert H and Allen, Dell K. (1994) Manufacturing Processes Reference Guide. New York, NY: Industrial Press Inc. pg. 124-125.