Polyneuridine-aldehyde esterase

Last updated
polyneuridine-aldehyde esterase
Enzyme Polyneuridine Aldehyde Esterase.png
Polyneuridine-Aldehyde Esterase 3D Rendering
Identifiers
EC no. 3.1.1.78
CAS no. 87041-55-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme polyneuridine-aldehyde esterase (EC 3.1.1.78) catalyzes the following reaction: [1]

Contents

polyneuridine aldehyde + H2O 16-epivellosimine + CO2 + methanol

This enzyme participates in indole alkaloid biosynthesis.

Nomenclature

This enzyme belongs to the family of hydrolases, specifically those acting on carboxylic ester bonds. The systematic name is polyneuridine aldehyde hydrolase (decarboxylating). Other names in common use include:

Homologues

This enzyme is found in various forms in plant species such as Arabidopsis thaliana , Glycine max (soybean), Vitis vinifera (wine grape), and Solanum lycopersicum (tomato) among others.

Polyneuridine-aldehyde esterase also appears in select bacteria including Enterobacter cloacae .

Structure

The secondary structure of this enzyme consists mainly of α helices. In its native form, this enzyme has a tertiary structure that includes two main lobes (as depicted above in the blue 3D representation on the top right).

Reaction

Polyneuridine aldehyde.png Polyneuridine beta-aldehydoacid.png 16-Epivellosimine.png

Polyneuridine-aldehyde esterase catalyzes the hydrolysis of the methyl ester in polyneuridine aldehyde to form polyneuridine β-aldehydoacid and methanol. The carboxylic acid in the product spontaneously undergoes decarboxylation, yielding 16-epivellosimine and carbon dioxide. [1]

Mechanism

Crystallographic structure of polyneuridine aldehyde esterase from Rauvolfia serpentina (rainbow colored, N-terminus = blue, C-terminus = red). The enzyme is complexed with its product 16-epi-vellosimine that is depicted as a space-filling model (carbon = white, oxygen = red, nitrogen = blue). 3GZJ.png
Crystallographic structure of polyneuridine aldehyde esterase from Rauvolfia serpentina (rainbow colored, N-terminus = blue, C-terminus = red). The enzyme is complexed with its product 16-epi-vellosimine that is depicted as a space-filling model (carbon = white, oxygen = red, nitrogen = blue).

The mechanism of hydrolysis performed by polyneuridine-aldehyde esterase is not known. It has been suggested that the enzyme utilizes a catalytic triad composed of Ser-87, Asp-216 and His-244. [3] The catalytic amino acid order is the same as the order of enzymes that are part of the α/β hydrolase family. Thus polyneuridine-aldehyde esterase may be a novel member of the α/β hydrolase group. [4]

Broader significance

This enzyme is a part of the pathway of indole alkaloid biosynthesis. The indole alkaloids that result from this metabolic pathway are used by many plant species as a defense against herbivores and parasites.

Open questions

The precise mechanisms by which this enzyme performs its function is still unknown. As noted above, researchers are formulating suggestions as to how polyneuridine-aldehyde esterase catalyses the decomposition of polyneuridine-aldehyde, but a mechanism has not yet been affirmed with absolute certainty. Due to the lack of complete understanding of polyneuridine-aldehyde esterase's precise mechanism, this enzyme cannot be grouped into a family of enzymes. Based on mechanism theories, suggestions can be made as to how this enzyme should be categorized, and some parallels can be drawn between polyneuridine-aldehyde esterase and other enzymes.

Related Research Articles

<span class="mw-page-title-main">Tryptophan synthase</span> Class of enzymes

Tryptophan synthase or tryptophan synthetase is an enzyme that catalyzes the final two steps in the biosynthesis of tryptophan. It is commonly found in Eubacteria, Archaebacteria, Protista, Fungi, and Plantae. However, it is absent from Animalia. It is typically found as an α2β2 tetramer. The α subunits catalyze the reversible formation of indole and glyceraldehyde-3-phosphate (G3P) from indole-3-glycerol phosphate (IGP). The β subunits catalyze the irreversible condensation of indole and serine to form tryptophan in a pyridoxal phosphate (PLP) dependent reaction. Each α active site is connected to a β active site by a 25 Ångstrom long hydrophobic channel contained within the enzyme. This facilitates the diffusion of indole formed at α active sites directly to β active sites in a process known as substrate channeling. The active sites of tryptophan synthase are allosterically coupled.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

α-Glucosidase Enzyme

α-Glucosidase (EC 3.2.1.20, is a glucosidase located in the brush border of the small intestine that acts upon α bonds:

<span class="mw-page-title-main">Ajmaline</span> Chemical compound

Ajmaline is an alkaloid that is classified as a 1-A antiarrhythmic agent. It is often used to induce arrhythmic contraction in patients suspected of having Brugada syndrome. Individuals suffering from Brugada syndrome will be more susceptible to the arrhythmogenic effects of the drug, and this can be observed on an electrocardiogram as an ST elevation.

In enzymology, a vellosimine dehydrogenase (EC 1.1.1.273) is an enzyme that catalyzes the chemical reaction

Strictosidine synthase (EC 4.3.3.2) is an enzyme in alkaloid biosynthesis that catalyses the condensation of tryptamine with secologanin to form strictosidine in a formal Pictet–Spengler reaction:

<span class="mw-page-title-main">Acetylxylan esterase</span> Class of enzymes

The enzyme acetylxylan esterase catalyzes the deacetylation of xylans and xylo-oligosaccharides.

The enzyme α-amino-acid esterase (EC 3.1.1.43) catalyzes the reaction

The enzyme arylesterase (EC 3.1.1.2) catalyzes the reaction

The enzyme bis(2-ethylhexyl)phthalate esterase (EC 3.1.1.60) catalyzes the reaction

The enzyme carboxylesterase (or carboxylic-ester hydrolase, EC 3.1.1.1; systematic name carboxylic-ester hydrolase) catalyzes reactions of the following form:

<span class="mw-page-title-main">Cutinase</span> Class of enzymes

The enzyme cutinase is a member of the hydrolase family. It catalyzes the following reaction:

The enzyme sterol esterase (EC 3.1.1.13) catalyzes the reaction

The enzyme tannase (EC 3.1.1.20) catalyzes the following reaction:

Asymmetric ester hydrolysis with pig liver esterase is the enantioselective conversion of an ester to a carboxylic acid through the action of the enzyme pig liver esterase. Asymmetric ester hydrolysis involves the selective reaction of one of a pair of either enantiotopic or enantiomorphic ester groups.

The enzyme acetylajmaline esterase (EC 3.1.1.80, AAE, 2β(R)-17-O-acetylajmalan:acetylesterase, acetylajmalan esterase; systematic name 17-O-acetylajmaline O-acetylhydrolase) catalyses the following reactions:

3α(S)-strictosidine β-glucosidase (EC 3.2.1.105) is an enzyme with systematic name strictosidine β-D-glucohydrolase. It catalyses the following chemical reaction:

(S)-hydroxynitrile lyase (EC 4.1.2.47, (S)-cyanohydrin producing hydroxynitrile lyase, (S)-oxynitrilase, (S)-HbHNL, (S)-MeHNL, hydroxynitrile lyase, oxynitrilase, HbHNL, MeHNL, (S)-selective hydroxynitrile lyase, (S)-cyanohydrin carbonyl-lyase (cyanide forming), hydroxynitrilase) is an enzyme with systematic name (S)-cyanohydrin lyase (cyanide forming). This enzyme catalyses the interconversion between cyanohydrins and the carbonyl compounds derived from the cyanohydrin with free cyanide, as in the following two chemical reactions:

<span class="mw-page-title-main">PETase</span> Class of enzymes

PETases are an esterase class of enzymes that catalyze the breakdown (via hydrolysis) of polyethylene terephthalate (PET) plastic to monomeric mono-2-hydroxyethyl terephthalate (MHET). The idealized chemical reaction is:

References

  1. 1 2 Pfitzner A, Stöckigt J (August 1983). "Characterization of polyneuridine aldehyde esterase, a key enzyme in the biosynthesis of sarpagine/ajmaline type alkaloids". Planta Med. 48 (8): 221–7. doi:10.1055/s-2007-969924. PMID   17404987.
  2. PDB: 3GZJ ; Yang L, Hill M, Wang M, Panjikar S, Stöckigt J (2009). "Structural basis and enzymatic mechanism of the biosynthesis of C9- from C10-monoterpenoid indole alkaloids". Angew. Chem. Int. Ed. Engl. 48 (28): 5211–3. doi:10.1002/anie.200900150. PMID   19496101.
  3. Mattern-Dogru E, Ma X, Hartmann J, Decker H, Stöckigt J (June 2002). "Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis". Eur. J. Biochem. 269 (12): 2889–96. doi: 10.1046/j.1432-1033.2002.02956.x . PMID   12071952.
  4. Dogru E, Warzecha H, Seibel F, Haebel S, Lottspeich F, Stöckigt J (March 2000). "The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the alpha/betahydrolase super family". Eur. J. Biochem. 267 (5): 1397–406. doi:10.1046/j.1432-1327.2000.01136.x. PMID   10691977.

Further reading