Triacylglycerol lipase

Last updated
Triacylglycerol lipase
Identifiers
EC no. 3.1.1.3
CAS no. 9001-62-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins
Lipase (class 3)
PDB 3tgl EBI.jpg
Structure of Triacyl-glycerol acylhydrolase.
Identifiers
SymbolLipase_3
Pfam PF01764
InterPro IPR002921
PROSITE PDOC00110
SCOP2 3tgl / SCOPe / SUPFAM
OPM superfamily 127
OPM protein 3tgl
CDD cd00519
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The enzyme triacylglycerol lipase (also triglyceride lipase, EC 3.1.1.3;systematic name triacylglycerol acylhydrolase) catalyses the hydrolysis of ester linkages of triglycerides: [1]

Contents

triacylglycerol + H2O diacylglycerol + a carboxylate

These lipases are widely distributed in animals, plants and prokaryotes. This family was also called class 3 lipases as they are only distantly related to other lipase families. [2] [3] [4] [5] [6]

Human proteins containing this domain

DAGLA; DAGLB; LOC221955; The pancreatic enzyme acts only on an ester-water interface.

Nomenclature

Other names include lipase, butyrinase, tributyrinase, Tween hydrolase, steapsin, triacetinase, tributyrin esterase, Tweenase, amno N-AP, Takedo 1969-4-9, Meito MY 30, Tweenesterase, GA 56, capalase L, triglyceride hydrolase, triolein hydrolase, tween-hydrolyzing esterase, amano CE, cacordase, triglyceridase, triacylglycerol ester hydrolase, amano P, amano AP, PPL, glycerol-ester hydrolase, GEH, meito Sangyo OF lipase, hepatic lipase, lipazin, post-heparin plasma protamine-resistant lipase, salt-resistant post-heparin lipase, heparin releasable hepatic lipase, amano CES, amano B, tributyrase, triglyceride lipase, liver lipase, hepatic monoacylglycerol acyltransferase).

See also

Related Research Articles

<span class="mw-page-title-main">Lipoprotein lipase</span> Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:

<span class="mw-page-title-main">Lingual lipase</span> Mammalian protein found in Homo sapiens

Lingual lipase is a member of a family of digestive enzymes called triacylglycerol lipases, EC 3.1.1.3, that use the catalytic triad of aspartate, histidine, and serine to hydrolyze medium and long-chain triglycerides into partial glycerides and free fatty acids. The enzyme, released into the mouth along with the saliva, catalyzes the first reaction in the digestion of dietary lipid, with diglycerides being the primary reaction product. However, due to the unique characteristics of lingual lipase, including a pH optimum 4.5–5.4 and its ability to catalyze reactions without bile salts, the lipolytic activity continues through to the stomach. Enzyme release is signaled by autonomic nervous system after ingestion, at which time the serous glands under the circumvallate and foliate lingual papillae on the surface of the tongue secrete lingual lipase to the grooves of the circumvallate and foliate papillae, co-localized with fat taste receptors. The hydrolysis of the dietary fats is essential for fat absorption by the small intestine, as long chain triacylglycerides cannot be absorbed, and as much as 30% of fat is hydrolyzed within 1 to 20 minutes of ingestion by lingual lipase alone.

<span class="mw-page-title-main">Pyruvate carboxylase</span> Enzyme

Pyruvate carboxylase (PC) encoded by the gene PC is an enzyme of the ligase class that catalyzes the physiologically irreversible carboxylation of pyruvate to form oxaloacetate (OAA).

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

<span class="mw-page-title-main">Monoacylglycerol lipase</span> Class of enzymes

Monoacylglycerol lipase is an enzyme that, in humans, is encoded by the MGLL gene. MAGL is a 33-kDa, membrane-associated member of the serine hydrolase superfamily and contains the classical GXSXG consensus sequence common to most serine hydrolases. The catalytic triad has been identified as Ser122, His269, and Asp239.

Acid lipase disease or deficiency is a name used to describe two related disorders of fatty acid metabolism. Acid lipase disease occurs when the enzyme lysosomal acid lipase that is needed to break down certain fats that are normally digested by the body is lacking or missing. This results in the toxic buildup of these fats in the body's cells and tissues. These fatty substances, called lipids, include waxes, oils, and cholesterol.Three rare lipid storage diseases are caused by the deficiency of the enzyme lysosomal acid lipase:

<span class="mw-page-title-main">Hormone-sensitive lipase</span> Enzyme

Hormone-sensitive lipase (EC 3.1.1.79, HSL), also previously known as cholesteryl ester hydrolase (CEH), sometimes referred to as triacylglycerol lipase, is an enzyme that, in humans, is encoded by the LIPE gene, and catalyzes the following reaction:

Phospholipase A<sub>1</sub> Mammalian protein found in Homo Sapiens

Phospholipase A1 (EC 3.1.1.32; systematic name: phosphatidylcholine 1-acylhydrolase) encoded by the PLA1A gene is a phospholipase enzyme which removes the 1-acyl group:

Serine hydrolases are one of the largest known enzyme classes comprising approximately ~200 enzymes or 1% of the genes in the human proteome. A defining characteristic of these enzymes is the presence of a particular serine at the active site, which is used for the hydrolysis of substrates. The hydrolysis of the ester or peptide bond proceeds in two steps. First, the acyl part of the substrate is transferred to the serine, making a new ester or amide bond and releasing the other part of the substrate is released. Later, in a slower step, the bond between the serine and the acyl group is hydrolyzed by water or hydroxide ion, regenerating free enzyme. Unlike other, non-catalytic, serines, the reactive serine of these hydrolases is typically activated by a proton relay involving a catalytic triad consisting of the serine, an acidic residue and a basic residue, although variations on this mechanism exist.

<span class="mw-page-title-main">Hepatic lipase</span> Mammalian protein found in Homo sapiens

Hepatic lipase (HL), also called hepatic triglyceride lipase (HTGL) or LIPC (for "lipase, hepatic"), is a form of lipase, catalyzing the hydrolysis of triacylglyceride. Hepatic lipase is coded by chromosome 15 and its gene is also often referred to as HTGL or LIPC. Hepatic lipase is expressed mainly in liver cells, known as hepatocytes, and endothelial cells of the liver. The hepatic lipase can either remain attached to the liver or can unbind from the liver endothelial cells and is free to enter the body's circulation system. When bound on the endothelial cells of the liver, it is often found bound to heparan sulfate proteoglycans (HSPG), keeping HL inactive and unable to bind to HDL (high-density lipoprotein) or IDL (intermediate-density lipoprotein). When it is free in the bloodstream, however, it is found associated with HDL to maintain it inactive. This is because the triacylglycerides in HDL serve as a substrate, but the lipoprotein contains proteins around the triacylglycerides that can prevent the triacylglycerides from being broken down by HL.

<span class="mw-page-title-main">Gastric lipase</span> Class of enzymes

Gastric lipase, also known as LIPF, is an enzymatic protein that, in humans, is encoded by the LIPF gene.

<span class="mw-page-title-main">Bile salt-dependent lipase</span> Mammalian protein found in Homo sapiens

Bile salt-dependent lipase, also known as carboxyl ester lipase is an enzyme produced by the adult pancreas and aids in the digestion of fats. Bile salt-stimulated lipase is an equivalent enzyme found within breast milk. BSDL has been found in the pancreatic secretions of all species in which it has been looked for. BSSL, originally discovered in the milk of humans and various other primates, has since been found in the milk of many animals including dogs, cats, rats, and rabbits.

The enzyme 1,4-lactonase (EC 3.1.1.25) catalyzes the generic reaction

In biochemistry, an acetylesterase is a class of enzyme which catalyzes the hydrolysis of acetic esters into an alcohol and acetic acid:

The enzyme lysophospholipase (EC 3.1.1.5) catalyzes the reaction

The enzyme sterol esterase (EC 3.1.1.13) catalyzes the reaction

<span class="mw-page-title-main">Carboxylesterase 1</span> Protein-coding gene in the species Homo sapiens

Liver carboxylesterase 1 also known as carboxylesterase 1 is an enzyme that in humans is encoded by the CES1 gene. The protein is also historically known as serine esterase 1 (SES1), monocyte esterase and cholesterol ester hydrolase (CEH). Three transcript variants encoding three different isoforms have been found for this gene. The various protein products from isoform a, b and c range in size from 568, 567 and 566 amino acids long, respectively.

<span class="mw-page-title-main">Adipose triglyceride lipase</span> Mammalian protein found in Homo sapiens

Adipose triglyceride lipase, also known as patatin-like phospholipase domain-containing protein 2 and ATGL, is an enzyme that in humans is encoded by the PNPLA2 gene. ATGL catalyses the first reaction of lipolysis, where triacylglycerols are hydrolysed to diacylglycerols.

<span class="mw-page-title-main">Pancreatic lipase family</span> Mammalian protein found in Homo sapiens

Triglyceride lipases are a family of lipolytic enzymes that hydrolyse ester linkages of triglycerides. Lipases are widely distributed in animals, plants and prokaryotes.

<span class="mw-page-title-main">Lipase</span> Class of enzymes which cleave fats via hydrolysis

In biochemistry, lipase refers to a class of enzymes that catalyzes the hydrolysis of fats. Some lipases display broad substrate scope including esters of cholesterol, phospholipids, and of lipid-soluble vitamins and sphingomyelinases; however, these are usually treated separately from "conventional" lipases. Unlike esterases, which function in water, lipases "are activated only when adsorbed to an oil–water interface". Lipases perform essential roles in digestion, transport and processing of dietary lipids in most, if not all, organisms.

References

  1. Chapus C, Rovery M, Sarda L, Verger R (1988). "Minireview on pancreatic lipase and colipase". Biochimie. 70 (9): 1223–1234. doi:10.1016/0300-9084(88)90188-5. PMID   3147715.
  2. Korn ED, Quigley TW (June 1957). "Lipoprotein lipase of chicken adipose tissue". The Journal of Biological Chemistry. 226 (2): 833–9. doi: 10.1016/S0021-9258(18)70867-3 . PMID   13438870.
  3. Lynn WS, Perryman NC (July 1960). "Properties and purification of adipose tissue lipase". The Journal of Biological Chemistry. 235 (7): 1912–6. doi: 10.1016/S0021-9258(18)69335-4 . PMID   14419169.
  4. Sarda L, Desnuelle P (December 1958). "[Actions of pancreatic lipase on esters in emulsions]". Biochimica et Biophysica Acta. 30 (3): 513–21. doi:10.1016/0006-3002(58)90097-0. PMID   13618257.
  5. Singer, T.P.; Hofstee, B.H.J. (1948). "Studies on wheat germ lipase. I. Methods of estimation, purification and general properties of the enzyme". Arch. Biochem. 18 (2): 229–243. PMID   18875045.
  6. Singer, T.P.; Hofstee, B.H.J. (1948). "Studies on wheat germ lipase. II. Kinetics". Arch. Biochem. 18 (2): 245–259. PMID   18875046.
This article incorporates text from the public domain Pfam and InterPro: IPR002921