Clinical data | |
---|---|
Other names | (S,S)-CE-158; S,S-CE-158 |
Drug class | Atypical dopamine reuptake inhibitor |
Identifiers | |
| |
PubChem CID | |
Chemical and physical data | |
Formula | C17H14BrNOS2 |
Molar mass | 392.33 g·mol−1 |
3D model (JSmol) | |
| |
|
CE-158 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. [1] [2] [3] [4] [5] It is often but not always referred to as the enantiopure enantiomer (S,S)-CE-158 instead. [2] [3] [5]
CE-158 is a highly selective DRI with much greater potency than modafinil. [3] [5] As (S,S)-CE-158, its inhibitory potencies (IC50 ) at the monoamine transporters are 227 nM at the dopamine transporter (DAT), 11,970 nM at the norepinephrine transporter (NET) (53-fold lower), and inactive at the serotonin transporter (SERT). [5]
The drug shows pro-motivational effects in animals and reverses tetrabenazine-induced motivational deficits. [1] It increases dopamine levels in the nucleus accumbens, blocks amphetamine-induced dopamine release in vitro , shows no effect on locomotor activity with acute or repeated administration except at a high dose, and enhances learning in animals. [3] [2] [5]
CE-158 was first described by 2020. [5] It is closely related to CE-123, an earlier modafinil analogue. [4] [5] CE-158 and related agents are of interest in the potential treatment of motivational disorders, psychostimulant use disorder (PSUD), and Alzheimer's disease. [1] [2] [3] [4] [5]
The dopamine transporter is a membrane-spanning protein coded for in humans by the SLC6A3 gene, that pumps the neurotransmitter dopamine out of the synaptic cleft back into cytosol. In the cytosol, other transporters sequester the dopamine into vesicles for storage and later release. Dopamine reuptake via DAT provides the primary mechanism through which dopamine is cleared from synapses, although there may be an exception in the prefrontal cortex, where evidence points to a possibly larger role of the norepinephrine transporter.
Tetrabenazine is a drug for the symptomatic treatment of hyperkinetic movement disorders. It is sold under the brand names Nitoman and Xenazine among others. On August 15, 2008, the U.S. Food and Drug Administration approved the use of tetrabenazine to treat chorea associated with Huntington's disease. Although other drugs had been used "off label," tetrabenazine was the first approved treatment for Huntington's disease in the U.S. The compound has been known since the 1950s.
Phenylpiracetam, also known as fonturacetam and sold under the brand names Phenotropil, Actitropil, and Carphedon among others, is a stimulant and nootropic medication used in Russia and certain other Eastern European countries in the treatment of cerebrovascular deficiency, depression, apathy, and attention, and memory problems, among other indications. It is also used in Russian cosmonauts to improve physical, mental, and cognitive abilities. The drug is taken by mouth.
Nomifensine, sold under the brand names Merital and Alival, is a norepinephrine–dopamine reuptake inhibitor (NDRI), i.e. a drug that increases the amount of synaptic norepinephrine and dopamine available to receptors by blocking the dopamine and norepinephrine reuptake transporters. This is a mechanism of action shared by some recreational drugs like cocaine and the medication tametraline (see DRI). Research showed that the (S)-isomer is responsible for activity.
A eugeroic, or eugregoric, also known as a vigilance-promoting agent, is a type of drug that increases vigilance. The term has been used inconsistently and in multiple ways in the scientific literature, either to refer specifically to modafinil-type wakefulness-promoting agents or to refer to wakefulness-promoting agents generally. It was first introduced in the French literature in 1987 as a descriptor for modafinil-like wakefulness-promoting drugs and for purposes of distinguishing such drugs from psychostimulants. However, the term "eugeroic" has not been widely adopted in the literature, and instead the term "wakefulness-promoting agent" has been more widely used, both for modafinil-type drugs and other agents.
Flmodafinil, also known as bisfluoromodafinil and lauflumide, is a wakefulness-promoting agent related to modafinil which has been developed for treatment of a variety of different medical conditions. These include chronic fatigue syndrome, idiopathic hypersomnia, narcolepsy, attention deficit hyperactivity disorder (ADHD), and Alzheimer's disease. Aside its development as a potential pharmaceutical drug, flmodafinil is sold online and used non-medically as a nootropic.
CE-123, or as the active enantiomer (S)-CE-123, is an analog of modafinil, the most researched of a series of structurally related heterocyclic derivatives. In animal studies, CE-123 was found to improve performance on tests of learning and memory in a manner consistent with a nootropic effect profile. (S)-CE-123 has pro-motivational effects in animals, reverses tetrabenazine-induced motivational deficits, and could be useful in the treatment of motivational disorders in humans.
JHW-007 is a cocaine analogue and a high affinity atypical dopamine reuptake inhibitor that is being researched for the treatment of cocaine addiction. JHW-007 has been found to blunt the psychostimulant effects of cocaine and reduce self-administration in rodents. JHW-007 exposure has been shown to block the conditioned place preference effects of cocaine. JHW-007 may directly antagonize the autoregulatory dopamine D2 receptor, a hypothesis that was developed following the observation of JHW-007's ability to inhibit D2 receptor-mediated currents in the midbrain.
Esmodafinil (also known as (S)-modafinil or (+)-modafinil; developmental code name CRL-40983) is the enantiopure (S)-(+)-enantiomer of modafinil. Unlike armodafinil ((R)-(–)-modafinil), esmodafinil has never been marketed on its own.
PRX-14040 is a selective dopamine reuptake inhibitor that was developed by Prexa Pharmaceuticals. It has 28-fold selectivity for the dopamine transporter over the norepinephrine transporter. Similarly to various other dopamine reuptake inhibitors, the drug has been found to reverse motivational deficits induced by the dopamine depleting agent tetrabenazine in animals.
MRZ-9547, also known as (R)-phenylpiracetam, (R)-phenotropil, or (R)-fonturacetam, is a selective dopamine reuptake inhibitor (IC50Tooltip half-maximal inhibitory concentration = 14.5 μM) that was developed by Merz Pharma. It is the (R)-enantiomer of the racetam and nootropic phenylpiracetam (phenotropil; fonturacetam).
RDS03-94, or RDS3-094, is an atypical dopamine reuptake inhibitor that was derived from the wakefulness-promoting agent modafinil.
JJC8-088 is a dopamine reuptake inhibitor (DRI) that was derived from the wakefulness-promoting agent modafinil.
A motivation-enhancing drug, also known as a pro-motivational drug, is a drug which increases motivation. Drugs enhancing motivation can be used in the treatment of motivational deficits, for instance in depression, schizophrenia, and attention deficit hyperactivity disorder (ADHD). They can also be used in the treatment of disorders of diminished motivation (DDMs), including apathy, abulia, and akinetic mutism, disorders that can be caused by conditions like stroke, traumatic brain injury (TBI), and neurodegenerative diseases. Motivation-enhancing drugs are used non-medically by healthy people to increase motivation and productivity as well, for instance in educational contexts.
(S)-MK-26 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It is closely related to two other modafinil analogues, (S,S)-CE-158 and (S)-CE-123.
CT-005404, or CT-5404, is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It shows pro-motivational effects in animals and reverses motivational deficits induced by tetrabenazine and interleukin-1β. CT-005404 is described as being orally active in animals and having a long duration of action. It is under development by Chronos Therapeutics for treatment of motivational disorders. The drug was first described by 2018.
JJC8-016 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It was an early lead in the development of novel modafinil analogues with improved properties for potential use in the treatment of psychostimulant use disorder (PSUD).
JJC8-091 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It is a lead compound for potential treatment of psychostimulant use disorder (PSUD) and is under development by Encepheal Therapeutics for use as a pharmaceutical drug.
JJC8-089 is a dopamine reuptake inhibitor (DRI) that was derived from modafinil and is related to JJC8-016, JJC8-088, and JJC8-091. Its affinity (Ki) for the dopamine transporter (DAT) is 37.8 nM, for the norepinephrine transporter (NET) is 11,820 nM, for the serotonin transporter (SERT) is 6,800 nM, and for the sigma σ1 receptor is 2.24 nM. It also has significant affinity for several dopamine receptors. JJC8-089 has substantially higher affinity for the DAT than modafinil. The drug shows pro-motivational effects in animals. It was first described in the scientific literature by 2016.
Several atypical DAT inhibitors have been successful at reversing the effects of TBZ at doses that increase extracellular DA as measured by microdialysis, including CT-005404 (Rotolo et al. 2021), and the modafinil analogs CE-123 (Rotolo et al. 2019), CE-158 (Rotolo et al. 2020), and MK-26 (Kouhnavardi et al. 2022). [...] Furthermore, several drugs that inhibit DAT, when administered on their own, increase selection of high-effort PROG lever pressing in rats tested on the PROG/chow choice task, including bupropion (Randall et al. 2015); lisdexamfetamine (Yohn et al. 2016e); PRX-14040 (Yohn et al. 2016d); GBR 12909 (Yohn et al. 2016c); CE-123, CE-158, and CT-5404 (Rotolo et al. 2019, 2020, 2021); and MK-26 (Kouhnavardi et al. 2022).
Recent papers have assessed the effort-related effects of the novel atypical DAT inhibitors (S)-CE-123, (S,S)-CE158, and CT-005404. All three compounds reversed the low-effort bias induced by [tetrabenazine (TBZ)], and also increased selection of high-effort PROG lever pressing while decreasing chow intake (Rotolo et al. 2019, 2020, 2021). These compounds also produced modest but significant increases in extracellular DA in nucleus accumbens core, [...] atypical DAT inhibitors offer promise as potential treatments for effort-related motivational symptoms.
S,S-CE-158, a highly DAT-selective and atypical DAT inhibitor, demonstrated an ability to stabilize recognition memory during the information acquisition process in a dose-dependent manner in mice [193]. S,S-CE-158 induced a substantial and sustained increase in mice extracellular nucleus accumbens DA [193,194] but showed no significant effect on locomotor activity following acute or repeated exposure [194]. In addition, S,S-CE-158 attenuated the dopaminergic releasing effects of amphetamine in cells stably expressing hDAT and enhanced learning acquisition responses and neuronal activity in rats [194]. Furthermore, it was recently reported that only a high dose (20 mg/kg) of S,S-CE-158 increased locomotor activity in mice, and that a subthreshold dose (10 mg/kg) rescued motor learning deficits propagated by dopaminergic mGluR5 silencing, suggesting a role in DAT trafficking [195]. Therefore, understanding the effects of S,S-CE-158 in both males and females in animal models of PSUD will be very interesting.
Due to their high DAT specificity, synthetic modafinil analogs like R-modafinil, S-CE-123 (S-5-((benzhydrylsulfinyl)methyl) thiazole), S,S-CE158 (5-(((S)-((S)-(3-bromophenyl)(phenyl) methyl)sulfinyl)methyl)thiazole), and S-MK-26 ((S)-5-(((B(3- chlorophenyl)methyl)sulphinyl)methyl)thiazole) do not exert any effect on the reward pathway, making them less likely to cause addiction, abuse or withdrawal symptoms compared to the parent drug and other non-specific counterparts (Kristofova et al., 2018; Sagheddu et al., 2020; Hazani et al., 2022; Kouhnavardi et al., 2022).