Ribonuclease T

Last updated
Ribonuclease T
RnaseT.png
A ribonuclease T dimer in complex with DNA (orange), from PDB ID 3NH1. [1]
Identifiers
Symbolrnt
Pfam PF00929
InterPro IPR013520
SMART SM00479
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Ribonuclease T (RNase T, exonuclease T, exo T) is a ribonuclease enzyme involved in the maturation of transfer RNA and ribosomal RNA in bacteria, [2] as well as in DNA repair pathways. [3] It is a member of the DnaQ family of exonucleases and non-processively acts on the 3' end of single-stranded nucleic acids. RNase T is capable of cleaving both DNA and RNA, with extreme sequence specificity discriminating against cytosine at the 3' end of the substrate. [1] [2]

Contents

Structure and mechanism

RNAse T catalyzes the removal of nucleotides from the 3' end of both RNA and DNA. It is inhibited by both double stranded DNA and RNA, as well as cytosine residues on the 3' end of RNA. Two cytosines at the 3' end of RNA appear to remove the activity of RNAse T entirely. [3] This cytosine effect, however, is observed less with ssDNA. This lack of sequence specificity in ssDNA, combined with its ability to act on ssDNA close to a duplex region, has led to its use in creating blunt ends for DNA cloning. [4] Structurally, RNAse T exists as an anti-parallel dimer [5] [6] and requires a divalent cation to function. [7]

RNAse T phenylalinine residues interacting with a AAA trinucleotide. PDB 3V9X. RNAse T pi interactions.png
RNAse T phenylalinine residues interacting with a AAA trinucleotide. PDB 3V9X.

RNAse T is able to achieve its sequence specificity in RNA digestion via several aromatic residues that sandwich between nucleobases. The π-π interactions between four phenylalanine residues and the two nucleotides at the 3' end are different depending on the identify of the nucleotides, which changes the conformation and thus activity of the enzyme. [8] An additional glutamic acid residue rotates to hydrogen bond to cytosine by not other bases, further increasing specificity. [9]

Function

A member of the larger DEDD family of exoribonucleases, RNAse T plays a key role in the maturation of tRNA [10] as well as the maturation of the 5S [11] and 23S [12] rRNA domains. Specifically, RNAse T cleaves the 3' AMP residue from the 3' CCA sequences at the end of tRNA, which explains RNAse T's sequence specificity for stopping at the 3' CC sequence. [13] Additionally, RNAse T can play a role in DNA repair by cleaving the 3' end of bulge DNA. [3]

While E. coli can survive without RNAse T, its absence leads to slower life cycles and weakened response to starvation. [14] Additionally, the presence of RNAse T in E. coli is linked to increased resistance to UV damage. [15] It has been theorized that, while other ribonculeases can perform the function RNAse T, the fact that RNAse T is more effective at cleaving DNA and RNA near double-stranded regions means that alternatives are less effective. [16] Despite the apparent usefulness of RNAse T, the enzyme is only found in gammaproteobacteria. [17]

In E. coli, RNAse T is encoded by the rnt gene and is hypothesized to have diverged from the proofreading subunits of polymerase III during the emergence of gammaproteobacteria. [16] [17]

Related Research Articles

<span class="mw-page-title-main">Ribonuclease</span> Class of enzyme that catalyzes the degradation of RNA

Ribonuclease is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 and 3.1 classes of enzymes.

<span class="mw-page-title-main">Nuclease</span> Class of enzymes which cleave nucleic acids

In biochemistry, a nuclease is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning.

In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription. This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex. These processes include the direct interaction of the mRNA secondary structure with the complex and/or the indirect activities of recruited termination factors. Release of the transcriptional complex frees RNA polymerase and related transcriptional machinery to begin transcription of new mRNAs.

<span class="mw-page-title-main">Ribonuclease H</span> Enzyme family

Ribonuclease H is a family of non-sequence-specific endonuclease enzymes that catalyze the cleavage of RNA in an RNA/DNA substrate via a hydrolytic mechanism. Members of the RNase H family can be found in nearly all organisms, from bacteria to archaea to eukaryotes.

dnaQ is the gene encoding the ε subunit of DNA polymerase III in Escherichia coli. The ε subunit is one of three core proteins in the DNA polymerase complex. It functions as a 3’→5’ DNA directed proofreading exonuclease that removes incorrectly incorporated bases during replication. dnaQ may also be referred to as mutD.

<span class="mw-page-title-main">Exonuclease</span> Class of enzymes; type of nuclease

Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5′ to 3′ exonuclease (Xrn1), which is a dependent decapping protein; 3′ to 5′ exonuclease, an independent protein; and poly(A)-specific 3′ to 5′ exonuclease.

<span class="mw-page-title-main">Transfer-messenger RNA</span>

Transfer-messenger RNA is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex (tmRNP) together with Small Protein B (SmpB), Elongation Factor Tu (EF-Tu), and ribosomal protein S1. In trans-translation, tmRNA and its associated proteins bind to bacterial ribosomes which have stalled in the middle of protein biosynthesis, for example when reaching the end of a messenger RNA which has lost its stop codon. The tmRNA is remarkably versatile: it recycles the stalled ribosome, adds a proteolysis-inducing tag to the unfinished polypeptide, and facilitates the degradation of the aberrant messenger RNA. In the majority of bacteria these functions are carried out by standard one-piece tmRNAs. In other bacterial species, a permuted ssrA gene produces a two-piece tmRNA in which two separate RNA chains are joined by base-pairing.

<span class="mw-page-title-main">Ribonuclease III</span> Class of enzymes

Ribonuclease III (RNase III or RNase C)(BRENDA 3.1.26.3) is a type of ribonuclease that recognizes dsRNA and cleaves it at specific targeted locations to transform them into mature RNAs. These enzymes are a group of endoribonucleases that are characterized by their ribonuclease domain, which is labelled the RNase III domain. They are ubiquitous compounds in the cell and play a major role in pathways such as RNA precursor synthesis, RNA Silencing, and the pnp autoregulatory mechanism.

<span class="mw-page-title-main">Multicopy single-stranded DNA</span>

Multicopy single-stranded DNA (msDNA) is a type of extrachromosomal satellite DNA that consists of a single-stranded DNA molecule covalently linked via a 2'-5'phosphodiester bond to an internal guanosine of an RNA molecule. The resultant DNA/RNA chimera possesses two stem-loops joined by a branch similar to the branches found in RNA splicing intermediates. The coding region for msDNA, called a "retron", also encodes a type of reverse transcriptase, which is essential for msDNA synthesis.

<span class="mw-page-title-main">Y RNA</span>

Y RNAs are small non-coding RNAs. They are components of the Ro60 ribonucleoprotein particle which is a target of autoimmune antibodies in patients with systemic lupus erythematosus. They are also reported to be necessary for DNA replication through interactions with chromatin and initiation proteins. However, mouse embryonic stem cells lacking Y RNAs are viable and have normal cell cycles.

<span class="mw-page-title-main">Polynucleotide phosphorylase</span> Class of enzymes

Polynucleotide Phosphorylase (PNPase) is a bifunctional enzyme with a phosphorolytic 3' to 5' exoribonuclease activity and a 3'-terminal oligonucleotide polymerase activity. That is, it dismantles the RNA chain starting at the 3' end and working toward the 5' end. It also synthesizes long, highly heteropolymeric tails in vivo. It accounts for all of the observed residual polyadenylation in strains of Escherichia coli missing the normal polyadenylation enzyme. Discovered by Marianne Grunberg-Manago working in Severo Ochoa's lab in 1955, the RNA-polymerization activity of PNPase was initially believed to be responsible for DNA-dependent synthesis of messenger RNA, a notion that was disproven by the late 1950s.

<span class="mw-page-title-main">Exoribonuclease</span> Class of enzymes that degrade RNA

An exoribonuclease is an exonuclease ribonuclease, which are enzymes that degrade RNA by removing terminal nucleotides from either the 5' end or the 3' end of the RNA molecule. Enzymes that remove nucleotides from the 5' end are called 5'-3' exoribonucleases, and enzymes that remove nucleotides from the 3' end are called 3'-5' exoribonucleases.

Exoribonuclease II is an enzyme. This enzyme catalyses the following chemical reaction

Deoxyribonuclease IV (phage-T4-induced) is catalyzes the degradation nucleotides in DsDNA by attacking the 5'-terminal end.

RNase R, or Ribonuclease R, is a 3'-->5' exoribonuclease, which belongs to the RNase II superfamily, a group of enzymes that hydrolyze RNA in the 3' - 5' direction. RNase R has been shown to be involved in selective mRNA degradation, particularly of non stop mRNAs in bacteria. RNase R has homologues in many other organisms.

The degradosome is a multiprotein complex present in most bacteria that is involved in the processing of ribosomal RNA and the degradation of messenger RNA and is regulated by Non-coding RNA. It contains the proteins RNA helicase B, RNase E and Polynucleotide phosphorylase.

<span class="mw-page-title-main">Poly(A)-specific ribonuclease</span> Protein-coding gene in the species Homo sapiens

Poly(A)-specific ribonuclease (PARN), also known as polyadenylate-specific ribonuclease or deadenylating nuclease (DAN), is an enzyme that in humans is encoded by the PARN gene.

<span class="mw-page-title-main">RPP14</span> Protein-coding gene in the species Homo sapiens

Ribonuclease P protein subunit p14 is an enzyme that in humans is encoded by the RPP14 gene.

In molecular biology, trans-activating crispr RNA (tracrRNA) is a small trans-encoded RNA. It was first discovered by Emmanuelle Charpentier in her study of human pathogen Streptococcus pyogenes, a type of bacteria that causes harm to humanity. In bacteria and archaea; CRISPR-Cas constitute an RNA-mediated defense system which protects against viruses and plasmids. This defensive pathway has three steps. First a copy of the invading nucleic acid is integrated into the CRISPR locus. Next, CRISPR RNAs (crRNAs) are transcribed from this CRISPR locus. The crRNAs are then incorporated into effector complexes, where the crRNA guides the complex to the invading nucleic acid and the Cas proteins degrade this nucleic acid. There are several CRISPR system subtypes.

Ribonuclease E is a bacterial ribonuclease that participates in the processing of ribosomal RNA and the chemical degradation of bulk cellular RNA.

References

  1. 1 2 Hsiao YY, Duh Y, Chen YP, Wang YT, Yuan HS (September 2012). "How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes". Nucleic Acids Research. 40 (16): 8144–54. doi:10.1093/nar/gks548. PMC   3439924 . PMID   22718982.
  2. 1 2 Zuo Y, Deutscher MP (August 2002). "The physiological role of RNase T can be explained by its unusual substrate specificity". The Journal of Biological Chemistry. 277 (33): 29654–61. doi: 10.1074/jbc.M204252200 . PMID   12050169.
  3. 1 2 3 Hsiao YY, Fang WH, Lee CC, Chen YP, Yuan HS (March 2014). "Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways". PLOS Biology. 12 (3): e1001803. doi: 10.1371/journal.pbio.1001803 . PMC   3942315 . PMID   24594808.
  4. Zuo Y, Deutscher MP (October 1999). "The DNase activity of RNase T and its application to DNA cloning". Nucleic Acids Research. 27 (20): 4077–82. doi:10.1093/nar/27.20.4077. PMC   148676 . PMID   10497273.
  5. Li Z, Zhan L, Deutscher MP (January 1996). "Escherichia coli RNase T functions in vivo as a dimer dependent on cysteine 168". The Journal of Biological Chemistry. 271 (2): 1133–7. doi: 10.1074/jbc.271.2.1133 . PMID   8557641.
  6. Zuo Y, Zheng H, Wang Y, Chruszcz M, Cymborowski M, Skarina T, et al. (April 2007). "Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover". Structure. 15 (4): 417–28. doi:10.1016/j.str.2007.02.004. PMC   1907377 . PMID   17437714.
  7. Deutscher MP, Marlor CW (June 1985). "Purification and characterization of Escherichia coli RNase T". The Journal of Biological Chemistry. 260 (11): 7067–71. doi: 10.1016/S0021-9258(18)88888-3 . PMID   3888994.
  8. Duh Y, Hsiao YY, Li CL, Huang JC, Yuan HS (December 2015). "Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids". Protein Science. 24 (12): 1934–41. doi:10.1002/pro.2800. PMC   4815224 . PMID   26362012.
  9. Hsiao YY, Yang CC, Lin CL, Lin JL, Duh Y, Yuan HS (April 2011). "Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation". Nature Chemical Biology. 7 (4): 236–43. doi:10.1038/nchembio.524. PMID   21317904.
  10. Li Z, Deutscher MP (August 1996). "Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo". Cell. 86 (3): 503–12. doi: 10.1016/s0092-8674(00)80123-3 . PMID   8756732.
  11. Li Z, Deutscher MP (July 1995). "The tRNA processing enzyme RNase T is essential for maturation of 5S RNA". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 6883–6. Bibcode:1995PNAS...92.6883L. doi: 10.1073/pnas.92.15.6883 . PMC   41434 . PMID   7542780.
  12. Li Z, Pandit S, Deutscher MP (January 1999). "Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T". RNA. 5 (1): 139–46. doi:10.1017/s1355838299981669. PMC   1369746 . PMID   9917073.
  13. Deutscher MP, Marlor CW, Zaniewski R (July 1984). "Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA". Proceedings of the National Academy of Sciences of the United States of America. 81 (14): 4290–3. Bibcode:1984PNAS...81.4290D. doi: 10.1073/pnas.81.14.4290 . PMC   345573 . PMID   6379642.
  14. Kelly KO, Deutscher MP (October 1992). "The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli". Journal of Bacteriology. 174 (20): 6682–4. doi:10.1128/jb.174.20.6682-6684.1992. PMC   207653 . PMID   1400219.
  15. Viswanathan M, Lanjuin A, Lovett ST (March 1999). "Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli". Genetics. 151 (3): 929–34. doi:10.1093/genetics/151.3.929. PMC   1460521 . PMID   10049912.
  16. 1 2 Bechhofer DH, Deutscher MP (June 2019). "Bacterial ribonucleases and their roles in RNA metabolism". Critical Reviews in Biochemistry and Molecular Biology. 54 (3): 242–300. doi:10.1080/10409238.2019.1651816. PMC   6776250 . PMID   31464530.
  17. 1 2 Zuo Y, Deutscher MP (March 2001). "Exoribonuclease superfamilies: structural analysis and phylogenetic distribution". Nucleic Acids Research. 29 (5): 1017–26. doi:10.1093/nar/29.5.1017. PMC   56904 . PMID   11222749.