Runcinated 24-cells

Last updated
24-cell t0 F4.svg
24-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
24-cell t03 F4.svg
Runcinated 24-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
24-cell t013 F4.svg
Runcitruncated 24-cell
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
24-cell t0123 F4.svg
Omnitruncated 24-cell
(Runcicantitruncated 24-cell)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in F4 Coxeter plane

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular 24-cell.

Contents

There are 3 unique degrees of runcinations of the 24-cell including with permutations truncations and cantellations.

Runcinated 24-cell

Runcinated 24-cell
Type Uniform 4-polytope
Schläfli symbol t0,3{3,4,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells24048 3.3.3.3 Octahedron.png
192 3.4.4 Triangular prism.png
Faces672384{3}
288{4}
Edges576
Vertices144
Vertex figure Runcinated 24-cell verf.png
elongated square antiprism
Symmetry group Aut(F4), [[3,4,3]], order 2304
Properties convex, edge-transitive
Uniform index 25 26 27
Net Small prismatotetracontoctachoron net.png
Net

In geometry, the runcinated 24-cell or small prismatotetracontoctachoron is a uniform 4-polytope bounded by 48 octahedra and 192 triangular prisms. The octahedral cells correspond with the cells of a 24-cell and its dual.

E. L. Elte identified it in 1912 as a semiregular polytope.

Alternate names

Coordinates

The Cartesian coordinates of the runcinated 24-cell having edge length 2 is given by all permutations of sign and coordinates of:

(0, 0, 2, 2+2)
(1, 1, 1+2, 1+2)

The permutations of the second set of coordinates coincide with the vertices of an inscribed cantellated tesseract.

Projections

orthographic projections
Coxeter plane F4B4
Graph 24-cell t03 F4.svg 24-cell t03 B4.svg
Dihedral symmetry [[12]] = [24][8]
Coxeter planeB3 / A2B2 / A3
Graph 24-cell t03 B3.svg 24-cell t03 B2.svg
Dihedral symmetry[6][[4]] = [8]
3D perspective projections
Runcinated 24-cell Schlegel halfsolid.png
Schlegel diagram, centered on octahedron, with the octahedra shown.
Runcinated 24-cell-perspective-octahedron-first.gif
Perspective projection of the runcinated 24-cell into 3 dimensions, centered on an octahedral cell.

The rotation is only of the 3D image, in order to show its structure, not a rotation in 4-space. Fifteen of the octahedral cells facing the 4D viewpoint are shown here in red. The gaps between them are filled up by a framework of triangular prisms.

Runcinated 24cell1.png
Stereographic projection with 24 of its 48 octahedral cells

The regular skew polyhedron, {4,8|3}, exists in 4-space with 8 square around each vertex, in a zig-zagging nonplanar vertex figure. These square faces can be seen on the runcinated 24-cell, using all 576 edges and 288 vertices. The 384 triangular faces of the runcinated 24-cell can be seen as removed. The dual regular skew polyhedron, {8,4|3}, is similarly related to the octagonal faces of the bitruncated 24-cell.

Runcitruncated 24-cell

Runcitruncated 24-cell
Type Uniform 4-polytope
Schläfli symbol t0,1,3{3,4,3}
s2,3{3,4,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Cells24024 4.6.6 Truncated octahedron.png
96 4.4.6 Hexagonal prism.png
96 3.4.4 Triangular prism.png
24 3.4.4.4 Small rhombicuboctahedron.png
Faces1104192{3}
720{4}
192{6}
Edges1440
Vertices576
Vertex figure Runcitruncated 24-cell verf.png
Trapezoidal pyramid
Symmetry group F4, [3,4,3], order 1152
Properties convex
Uniform index 28 29 30
Net Prismatorhombated icositetrachoron net.png
Net

The runcitruncated 24-cell or prismatorhombated icositetrachoron is a uniform 4-polytope derived from the 24-cell. It is bounded by 24 truncated octahedra, corresponding with the cells of a 24-cell, 24 rhombicuboctahedra, corresponding with the cells of the dual 24-cell, 96 triangular prisms, and 96 hexagonal prisms.

Coordinates

The Cartesian coordinates of an origin-centered runcitruncated 24-cell having edge length 2 are given by all permutations of coordinates and sign of:

(0, 2, 22, 2+32)
(1, 1+2, 1+22, 1+32)

The permutations of the second set of coordinates give the vertices of an inscribed omnitruncated tesseract.

The dual configuration has coordinates generated from all permutations and signs of:

(1,1,1+2,5+2)
(1,3,3+2,3+2)
(2,2,2+2,4+2)

Projections

orthographic projections
Coxeter plane F4
Graph 24-cell t023 F4.svg
Dihedral symmetry [12]
Coxeter planeB3 / A2 (a)B3 / A2 (b)
Graph 24-cell t023 B3.svg 24-cell t013 B3.svg
Dihedral symmetry[6][6]
Coxeter planeB4B2 / A3
Graph 24-cell t023 B4.svg 24-cell t023 B2.svg
Dihedral symmetry[8][4]
Runcitruncated 24-cell.png
Schlegel diagram
centered on rhombicuboctahedron
only triangular prisms shown

Runcicantic snub 24-cell

A half-symmetry construction of the runcitruncated 24-cell (or runcicantellated 24-cell), as CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png, also called a runcicantic snub 24-cell, as CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has an identical geometry, but its triangular faces are further subdivided. Like the snub 24-cell, it has symmetry [3+,4,3], order 576. The runcitruncated 24-cell has 192 identical hexagonal faces, while the runcicantic snub 24-cell has 2 constructive sets of 96 hexagons. The difference can be seen in the vertex figures:

Runcitruncated 24-cell verf.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Runcicantic snub 24-cell verf.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png

Runcic snub 24-cell

Runcic snub 24-cell
Schläfli symbol s3{3,4,3}
Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells24024 {3,5} Icosahedron.png
24 t{3,3} Truncated tetrahedron.png
96 (4.4.3) Triangular prism.png
96 tricup Triangular cupola.png
Faces960576 {3}
288 {4}
96 {6}
Edges1008
Vertices288
Vertex figure Runcic snub 24-cell verf.png
Symmetry group [3+,4,3], order 576
Properties convex

A related 4-polytope is the runcic snub 24-cell or prismatorhombisnub icositetrachoron, s3{3,4,3}, CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png. It is not uniform, but it is vertex-transitive and has all regular polygon faces. It is constructed with 24 icosahedra, 24 truncated tetrahedra, 96 triangular prisms, and 96 triangular cupolae in the gaps, for a total of 240 cells, 960 faces, 1008 edges, and 288 vertices. Like the snub 24-cell, it has symmetry [3+,4,3], order 576. [1]

The vertex figure contains one icosahedron, two triangular prisms, one truncated tetrahedron, and 3 triangular cupolae.

Orthographic projections Net
24-cell s3 B2.png 24-cell s3 B3.png Runcic snub 24-cell.png Prismatorhombisnub icositetrachoron net.png

Omnitruncated 24-cell

Omnitruncated 24-cell
Type Uniform 4-polytope
Schläfli symbol t0,1,2,3{3,4,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells24048 (4.6.8) Great rhombicuboctahedron.png
192 (4.4.6) Hexagonal prism.png
Faces1392864 {4}
384 {6}
144 {8}
Edges2304
Vertices1152
Vertex figure Omnitruncated 24-cell verf.png
Phyllic disphenoid
Symmetry group Aut(F4), [[3,4,3]], order 2304
Properties convex
Uniform index 29 30 31

The omnitruncated 24-cell or great prismatotetracontoctachoron is a uniform 4-polytope derived from the 24-cell. It is composed of 1152 vertices, 2304 edges, and 1392 faces (864 squares, 384 hexagons, and 144 octagons). It has 240 cells: 48 truncated cuboctahedra, 192 hexagonal prisms. Each vertex contains four cells in a phyllic disphenoidal vertex figure: two hexagonal prisms, and two truncated cuboctahedra.

Structure

The 48 truncated cuboctahedral cells are joined to each other via their octagonal faces. They can be grouped into two groups of 24 each, corresponding with the cells of a 24-cell and its dual. The gaps between them are filled in by a network of 192 hexagonal prisms, joined to each other via alternating square faces in alternating orientation, and to the truncated cuboctahedra via their hexagonal faces and remaining square faces.

Coordinates

The Cartesian coordinates of an omnitruncated 24-cell having edge length 2 are all permutations of coordinates and sign of:

(1, 1+2, 1+22, 5+32)
(1, 3+2, 3+22, 3+32)
(2, 2+2, 2+22, 4+32)

Images

orthographic projections
Coxeter plane F4B4
Graph 24-cell t0123 F4.svg 24-cell t0123 B4.svg
Dihedral symmetry [[12]] = [24][8]
Coxeter planeB3 / A2B2 / A3
Graph 24-cell t0123 B3.svg 24-cell t0123 B2.svg
Dihedral symmetry[6][[4]] = [8]
3D perspective projections
Omnitruncated 24-cell.png
Schlegel diagram
Omnitruncated 24-cell perspective-great rhombicuboctahedron-first-01.png
Perspective projection into 3D centered on a truncated cuboctahedron. The nearest great rhombicuboctahedral cell to the 4D viewpoint is shown in red, with the six surrounding great rhombicuboctahedra in yellow. Twelve of the hexagonal prisms sharing a square face with the nearest cell and hexagonal faces with the yellow cells are shown in blue. The remaining cells are shown in green. Cells lying on the far side of the polytope from the 4D viewpoint have been culled for clarity.
Net
Great prismatotetracontoctachoron net.png
Omnitruncated 24-cell
Dual gippic net.png
Dual to omnitruncated 24-cell

Nonuniform variants with [3,4,3] symmetry and two types of truncated cuboctahedra can be doubled by placing the two types of truncated cuboctahedra on each other to produce a nonuniform polychoron with 48 truncated cuboctahedra, 144 octagonal prisms (as ditetragonal trapezoprisms), 192 hexagonal prisms, two kinds of 864 rectangular trapezoprisms (288 with D2d symmetry and 576 with C2v symmetry), and 2304 vertices. Its vertex figure is an irregular triangular bipyramid.

Biomnitruncatotetracontaoctachoron vertex figure.png
Vertex figure

This polychoron can then be alternated to produce another nonuniform polychoron with 48 snub cubes, 144 square antiprisms, 192 octahedra (as triangular antiprisms), three kinds of 2016 tetrahedra (288 tetragonal disphenoids, 576 phyllic disphenoids, and 1152 irregular tetrahedra), and 1152 vertices. It has a symmetry of [[3,4,3]+], order 1152.

Alternated biomnitruncatotetracontaoctachoron vertex figure.png
Vertex figure

Full snub 24-cell

Vertex figure for the omnisnub 24-cell Full snub 24-cell verf.png
Vertex figure for the omnisnub 24-cell

The uniform snub 24-cell is called a semi-snub 24-cell by John Horton Conway with Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png within the F4 family, although it is a full snub or omnisnub within the D4 family, as CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel nodes hh.png.

In contrast a full snub 24-cell or omnisnub 24-cell, defined as an alternation of the omnitruncated 24-cell, cannot be made uniform, but it can be given Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png, and symmetry [[3,4,3]]+, order 1152, and constructed from 48 snub cubes, 192 octahedrons, and 576 tetrahedrons filling the gaps at the deleted vertices. Its vertex figure contains 4 tetrahedra, 2 octahedra, and 2 snub cubes. It has 816 cells, 2832 faces, 2592 edges, and 576 vertices. [2]

24-cell family polytopes
Name 24-cell truncated 24-cell snub 24-cell rectified 24-cell cantellated 24-cell bitruncated 24-cell cantitruncated 24-cell runcinated 24-cell runcitruncated 24-cell omnitruncated 24-cell
Schläfli
symbol
{3,4,3}t0,1{3,4,3}
t{3,4,3}
s{3,4,3}t1{3,4,3}
r{3,4,3}
t0,2{3,4,3}
rr{3,4,3}
t1,2{3,4,3}
2t{3,4,3}
t0,1,2{3,4,3}
tr{3,4,3}
t0,3{3,4,3}t0,1,3{3,4,3}t0,1,2,3{3,4,3}
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel
diagram
Schlegel wireframe 24-cell.png Schlegel half-solid truncated 24-cell.png Schlegel half-solid alternated cantitruncated 16-cell.png Schlegel half-solid cantellated 16-cell.png Cantel 24cell1.png Bitruncated 24-cell Schlegel halfsolid.png Cantitruncated 24-cell schlegel halfsolid.png Runcinated 24-cell Schlegel halfsolid.png Runcitruncated 24-cell.png Omnitruncated 24-cell.png
F4 24-cell t0 F4.svg 24-cell t01 F4.svg 24-cell h01 F4.svg 24-cell t1 F4.svg 24-cell t02 F4.svg 24-cell t12 F4.svg 24-cell t012 F4.svg 24-cell t03 F4.svg 24-cell t013 F4.svg 24-cell t0123 F4.svg
B4 24-cell t0 B4.svg 4-cube t123.svg 24-cell h01 B4.svg 24-cell t1 B4.svg 24-cell t02 B4.svg 24-cell t12 B4.svg 24-cell t012 B4.svg 24-cell t03 B4.svg 24-cell t013 B4.svg 24-cell t0123 B4.svg
B3(a) 4-cube t0 B3.svg 24-cell t01 B3.svg 24-cell h01 B3.svg 24-cell t1 B3.svg 24-cell t02 B3.svg 24-cell t12 B3.svg 24-cell t012 B3.svg 24-cell t03 B3.svg 24-cell t013 B3.svg 24-cell t0123 B3.svg
B3(b) 24-cell t3 B3.svg 24-cell t23 B3.svg 24-cell t2 B3.svg 24-cell t13 B3.svg 24-cell t123 B3.svg 24-cell t023 B3.svg
B2 24-cell t0 B2.svg 24-cell t01 B2.svg 24-cell h01 B2.svg 24-cell t1 B2.svg 24-cell t02 B2.svg 24-cell t12 B2.svg 24-cell t012 B2.svg 24-cell t03 B2.svg 24-cell t013 B2.svg 24-cell t0123 B2.svg

Notes

  1. Klitzing, Richard. "s3s4o3x".
  2. Klitzing, Richard. "s3s4s3s".

Related Research Articles

<span class="mw-page-title-main">Runcinated 5-cell</span>

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Cantellated tesseract</span>

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Icosahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.

<span class="mw-page-title-main">Truncated 24-cells</span>

In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Rectified 24-cell</span>

In geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope, which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Cantellated 24-cells</span>

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Stericated 5-simplexes</span>

In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.

Order-6 dodecahedral honeycomb Regular geometrical object in hyperbolic space

The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.

<span class="mw-page-title-main">Order-6 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Triangular tiling honeycomb</span>

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

<span class="mw-page-title-main">Square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.

<span class="mw-page-title-main">Order-4 octahedral honeycomb</span>

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds