Saharastega

Last updated

Saharastega
Temporal range: Upper Permian
Saharastega BW.jpg
Life reconstruction
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Batrachomorpha
Class: Amphibia
Order: Temnospondyli
Genus: Saharastega
Sidor et al., 2005
Type species
Saharastega moradiensis
Sidor et al., 2005

Saharastega is an extinct genus of basal temnospondyl which lived during the Late Permian period, around 251 to 260 million years ago. Remains of Saharastega, discovered by paleontologist Christian Sidor at the Moradi Formation in Niger, were described briefly in 2005 and more comprehensively in 2006. [1] [2] The description is based on a skull lacking the lower jaws.

Contents

Description

Skull roof

The skull is somewhat wide and gradually narrows towards the snout, with the portion of the skull in front of the orbits (eye sockets) longer than that behind them. It was 36.8 centimeters (14.5 inches) in length and 30 centimeters (11.8 inches) in width at its widest point. The cranial bones are somewhat eroded, but preserved portions are finely textured with pits and ridges as in most adult temnospondyls, but lacking the unornamented areas adjacent to the midline which characterize edopoids. The skull lacks lateral line grooves, which may indicate terrestriality, but the overall size and shape is akin to aquatic temnospondyls. The numerous teeth were broken, but their bases were all the same size and elliptical in cross-section. [2]

The nares (nostril holes) are narrow and angled almost perpendicular to the long axis of the skull, a unique feature which is dissimilar to the nares of other temnospondyls, which were either circular or angled parallel to the long axis of the skull. The orbits are small, rounded, and widely separated. The pineal foramen is absent. The suspensorium (jaw joint) is shifted forwards, which has the effect of twisting the quadrate bones forwards and closing up the squamosal embayments (large emarginations along the rear of the skull also known as "otic notches"). [2]

The arrangement of the cranial bones is generally similar to that of other early temnospondyls. The nasal bones (on the upper surface of the snout) are long, while the frontal and parietal bones (at the rear of the skull) are wide, which are traits related to the skull proportions. The lacrimal bones (on the side of the snout) are isolated, contacting neither the nares nor the orbits. These traits are akin to the cochleosaurid Chenoprosopus , but Saharastega lacks the characteristic postparietal shape of cochleosaurids. As with other early temnospondyls (but not later members of the group), Saharastega retains an intertemporal bone behind the eyes. Likewise, the supratemporal bone forms a portion of the rear edge of the skull, rather than being excluded by the tabular and squamosal bones which were present in that area. The tabulars themselves were uniquely shaped. They were thick, bluntly-tipped bones which twisted outwards and downwards along the rear edge of the skull. This is in contrast to other temnospondyls, which generally had smaller, triangular tabulars directed straight back. [2]

The braincase was complex and strongly built, though it was rather shallow owing to the short height of the skull. Unusually among temnospondyls, the skull possessed a large plate of bone above the foramen magnum, which underlaid a system of ridges forming an inverted T shape. This plate of bone may have been a single large supraoccipital, which was rare among Paleozoic amphibians, but was more likely formed by a contribution of the supraoccipital and postparietal bones as in baphetoids. This portion of the skull was somewhat similar to that of the dvinosaurian Isodectes . The exoccipital bones on either side of the foramen magnum stretch downwards to underscore the braincase, a rare feature also seen in some "advanced" temnospondyls.

Palate

The palate (roof of the mouth) is similar to that of Chenoprosopus and other early temnospondyls. The bones of the palate are covered with small, dome-like structures known as denticles. The interpterygoid vacuities (holes between the pterygoid bones which were characteristic of temnospondyls) were relatively small and semicircular, located more than halfway towards the rear of the skull. Their small size and rearward location means that their outer edge was completely formed by the pterygoid bones, without any contribution from other palatal bones at the edge of the skull. There was also a small, circular pair of holes ("anterior palatal vacuities") at the tip of the snout and elongated, rectangular choanae along the edge of the snout. The premaxilla bones at the tip of the snout had a complex tongue-and-groove connection to the maxilla bones directly behind them. This configuration, which is only visible from the palate, is seemingly unique to Saharastega among temnospondyls. The pterygoid bones had a narrow, bulbous contact with the parasphenoid bone (which forms the base of the braincase). While this contact is by no means flexible, it does contrast with the larger and more robust connection present in later temnospondyls. [2]

On the other hand, the palate also has several features in line with more "advanced" temnospondyls. A small depression known as a "fossa subrostralis media" was present where the premaxillae contact each other along the midpoint of the snout tip. This depression is also known is several stereospondylomorphs. Each of the large, plate-like vomer bones lie between the choanae and possess a single diagonally-oriented row of teeth (known as a "transvomerine tooth row") as well as a large fang. Vomer fangs (and palatal fangs in general) are abundant among early tetrapods, but a transvomerine tooth row is characteristic of "advanced" temnospondyls rather than early taxa such as edopoids. [2]

Classification

The first papers to discuss or describe Saharastega considered it to be part of the group Edopoidea, an early branch of temnospondyl amphibians. Most edopoids lived in the Carboniferous, but Saharastega (and its equally unusual contemporary Nigerpeton) survived until the late Permian as a relict of the early temnospondyl radiation. [1] Saharastega shares some seemingly unique features with edopoids (particularly the shape of the lacrimal bone), and particularly resembles the cochelosaurids, but also is dissimilar from edopoids in many ways. In the original papers, Saharastega was generally placed at the very base of Edopoidea. Regardless, it was clear that Saharastega was very basal ("primitive") compared to most temnospondyls, due to the retention of intertemporals, absence of lateral lines, small interpterygoid vacuities, and a narrow contact between the palate and braincase. [2]

Since these studies, the position of Saharastega has been controversial. Pawley (2006) placed it deeper within the edopoids, as the sister taxon to Cochleosauridae. [3] An informal suggestion by Australian paleontologist Adam Yates even proposed that it was not a temnospondyl at all, but rather a seymouriamorph based on general similarities to the skull of Seymouria . [4] McHugh (2012) tentatively placed it crownward within Temnospondyli (i.e. deeper within the temnospondyl family tree) by placing it as an eryopoid related to Zatracheidae. [5] A comprehensive 2013 study of temnospondyl relations did not include Saharastega due to it being an unstable taxon. [6]

Marjanovic & Laurin (2019) utilized Saharastega as part of their many reanalyses of Ruta & Coates (2007)'s tetrapod study. The original 2007 study did not include Saharastega, so it was added along with Nigerpeton and many other taxa in some of the reanalyses. Although Marjanovic & Laurin (2019) did not place Saharastega close to cochleosaurids or other edopoids (at least in their parsimony analyses), the study consistently placed it as the sister taxon to Nigerpeton. The clade containing these two unusual temnospondyls had an inconsistent placement, with a connection to Eryops, stereospondylomorphs, or the very base of Temnospondyli each considered equally likely. The main purpose of Marjanovic & Laurin (2019)'s study was to analyze different origins for modern lissamphibians. When the study restrained its results so that some or all modern lissamphibians were members of Temnospondyli, the results shifted the internal structure of the temnospondyl family tree. In these restrained reanalyses, Saharastega and Nigerpeton could additionally be within Stereospondylomorpha or close to Dvinosauria, meaning that there were five equally likely positions under certain parsimony methodologies, which relied on the principal that the simplest family tree is the most likely. [7]

On the other hand, the single bootstrap analysis of Marjanovic & Laurin (2019) which included Saharastega and Nigerpeton concluded that they were cochleosaurids. The connection between the Saharastega and Nigerpeton was relatively robust, found by 50% of bootstrap trees. Their connection to cochleosaurids was much more tentative, found by only 4% of bootstrap trees, although this was still the most consistent position under the bootstrap methodology. The bayesian analysis had a similar (but less unsteady) result, placing Saharastega and Nigerpeton (connected by 99% of bayesian trees) next to the cochleosaurid Chenoprosopus (connected by 33% of bayesian trees). [7]

Related Research Articles

<span class="mw-page-title-main">Temnospondyli</span> Ancestors of modern amphibians adapted to life on land

Temnospondyli or temnospondyls is a diverse ancient order of small to giant tetrapods — often considered primitive amphibians — that flourished worldwide during the Carboniferous, Permian and Triassic periods, with fossils being found on every continent. A few species continued into the Jurassic and Early Cretaceous periods, but all had gone extinct by the Late Cretaceous. During about 210 million years of evolutionary history, they adapted to a wide range of habitats, including freshwater, terrestrial, and even coastal marine environments. Their life history is well understood, with fossils known from the larval stage, metamorphosis, and maturity. Most temnospondyls were semiaquatic, although some were almost fully terrestrial, returning to the water only to breed. These temnospondyls were some of the first vertebrates fully adapted to life on land. Although temnospondyls are amphibians, many had characteristics such as scales and armour-like bony plates that distinguish them from the modern soft-bodied lissamphibians.

<i>Macroplata</i> Extinct genus of reptiles

Macroplata is an extinct genus of Early Jurassic rhomaleosaurid plesiosaur which grew up to 4.65 metres (15.3 ft) in length. Like other plesiosaurs, Macroplata probably lived on a diet of fish, using its sharp needle-like teeth to catch prey. Its shoulder bones were fairly large, indicating a powerful forward stroke for fast swimming. Macroplata also had a relatively long neck, twice the length of the skull, in contrast to pliosaurs.

<i>Eucritta</i> Extinct genus of tetrapods

Eucritta is an extinct genus of stem-tetrapod from the Viséan epoch in the Carboniferous period of Scotland. The name of the type and only species, E. melanolimnetes is a homage to the 1954 horror film Creature from the Black Lagoon.

<i>Cochleosaurus</i> Extinct genus of amphibians

Cochleosaurus (“spoon lizard”, from the Latin cochlear "spoon" and Greek sauros “lizard”_ were medium-sized edopoid temnospondyls that lived in Euramerica during the Muscovian period. Two species, C. bohemicus and C. florensis, have been identified from the fossil record.

<i>Edops</i> Extinct genus of amphibians

Edops is an extinct genus of temnospondyl amphibian from the Early Permian Period. Unlike more advanced temnospondyls of the time, such as Eryops, Edops exhibited an archaic pattern of palatal bones, and still possessed various additional bones at the back of the skull. Edopoids also had particularly big premaxillae and proportionally small external nostrils. Within the clade, the most basal member seems to be Edops from the Early Permian Archer City Formation of the US, a broad-skulled animal with large palatal teeth.

<i>Gerobatrachus</i> Extinct genus of amphibians

Gerobatrachus is an extinct genus of amphibamid temnospondyl that lived in the Early Permian, approximately 290 million years ago (Ma), in the area that is now Baylor County, Texas. When it was first described in 2008, Gerobatrachus was announced to be the closest relative of Batrachia, the group that includes modern frogs and salamanders. It possesses a mixture of characteristics from both groups, including a large frog-like head and a salamander-like tail. These features have led to it being dubbed a frogamander by the press. Some more recent studies place Gerobatrachus as the closest relative of Lissamphibia, the group that contains all modern amphibians including frogs, salamanders, and caecilians, or place modern amphibians far from Gerobatrachus within a group called Lepospondyli.

<i>Chenoprosopus</i> Genus of amphibians

Chenoprosopus is a genus of extinct cochleosauridae that lived during late Carboniferous and early Permian periods. Two known species of Chenoprosopus are C. milleri and C. lewisi. Chenoprosopus lewisi was described in the basis of a virtually complete skull with maximum skull length of 95 mm. It is significantly smaller than Chenoprosopus milleri and was differentiated from that taxon by Hook (1993) based on sutural patterns of the skull roof. Hook also mentioned the reduced size of the vomerine tusks differentiated C. lewisi from C. milleri, but the different size of these tusks may be different ontogenetic stages of growth. Many of other cochleosaurids from the same time period have an elongated vomer and wide and elongate choana. However, Chenoprosopus is distinguished by its more narrowly pointed snout and separation between the nasal from the maxilla by the broad lacrimal-septomaxilla contact.

<i>Konzhukovia</i> Genus of amphibians (fossil)

Konzhukovia is an amphibian genus that belongs to an extinct family Konzhukoviidae of temnospondyls, the largest clade of basal tetrapods including about 198 genera, 292 species, and more than half of which were alive during the early Mesozoic period. The animal was a predator that lived about 260 million years ago, and could get up to about three meters in length. Specifically, Konzukovia lived during the Permian, between 252 and 270 million years ago according to the type of rock the fossil was found in. There are three species within this genus, K. vetusta, K. tarda, and K. sangabrielensis, the first two originating from Russia while the latest originating from Southern Brazil. The discovery of this specimen in Southern Brazil provided more evidence to support the idea that during this animals existence, there was a “biological corridor” because of the supercontinent Pangea, allowing these species to be found so far apart from each other. Konzhukovia belongs to the family Archegosauridae, a family consisted of large temnospondyls that most likely compare to modern day crocodiles. Since the discovery of the latest species, K. sangabrielensis, Pacheco proposes that there must be the creation of a new family, Konzhokoviidae, a monophyletic group in a sister-group relationship with Stereospondlyi in order to accommodate the three species. Konzhukovia skulls usually exhibit typical rhinesuchid features including an overall parabolic shape, small orbits located more posteriorly, and the pterygoids do not reach the vomer. These animals were long-snouted amphibians that had clear adaptations made for fish catching, as well as exemplifying aquatic features.

<span class="mw-page-title-main">Rhinesuchidae</span> Extinct family of amphibians

Rhinesuchidae is a family of tetrapods that lived primarily in the Permian period. They belonged to the broad group Temnospondyli, a successful and diverse collection of semiaquatic tetrapods which modern amphibians are probably descended from. Rhinesuchids can be differentiated from other temnospondyls by details of their skulls, most notably the interior structure of their otic notches at the back of the skull. They were among the earliest-diverging members of the Stereospondyli, a subgroup of temnospondyls with flat heads and aquatic habits. Although more advanced stereospondyls evolved to reach worldwide distribution in the Triassic period, rhinesuchids primarily lived in the high-latitude environments of Gondwana during the Guadalupian and Lopingian epochs of the Permian. The taxonomy of this family has been convoluted, with more than twenty species having been named in the past; a 2017 review recognized only eight of them to be valid. While several purported members of this group have been reported to have lived in the Triassic period, most are either dubious or do not belong to the group. However, at least one valid genus of rhinesuchid is known from the early Triassic, a small member known as Broomistega. The most recent formal definition of Rhinesuchidae, advocated by Mariscano et al. (2017) is that of a stem-based clade containing all taxa more closely related to Rhinesuchus whaitsi than to Lydekkerina huxleyi or Peltobatrachus pustulatus. A similar alternate definition is that Rhinesuchidae is a stem-based clade containing all taxa more closely related to Uranocentrodon senekalensis than to Lydekkerina huxleyi, Trematosaurus brauni, or Mastodonsaurus giganteus.

<i>Nigerpeton</i>

Nigerpeton is an extinct genus of crocodile-like temnospondyl amphibians from the late Permian (Changhsingian) period. These temnospondyls lived in modern-day Niger, which was once part of central Pangaea, about 250 million years ago. Nigerpeton is a member of the Cochleosauridae family, a group of edopoid temnospondyl amphibians known from the late Carboniferous (Pennsylvanian) and early Permian (Cisuralian).

<span class="mw-page-title-main">Cochleosauridae</span> Extinct family of amphibians

Cochleosauridae is a family of edopoid temnospondyl amphibians, among the most basal of temnospondyls. Most members of this family are known from the late Carboniferous (Pennsylvanian) and early Permian (Cisuralian) of Europe and North America, though Nigerpeton is known from the Late Permian (Lopingian) of Niger in North Africa.

<i>Neopteroplax</i> Extinct genus of amphibians

Neopteroplax is an extinct genus of eogyrinid embolomere closely related to European genera such as Eogyrinus and Pteroplax. Members of this genus were among the largest embolomeres in North America. Neopteroplax is primarily known from a large skull found in Ohio, although fragmentary embolomere fossils from Texas and New Mexico have also been tentatively referred to the genus. Despite its similarities to specific European embolomeres, it can be distinguished from them due to a small number of skull and jaw features, most notably a lower surangular at the upper rear portion of the lower jaw.

Doleserpeton is an extinct, monospecific genus of dissorophoidean temnospondyl within the family Amphibamidae that lived during the Upper Permian, 285 million years ago. Doleserpeton is represented by a single species, Doleserpeton annectens, which was first described by John R. Bolt in 1969. Fossil evidence of Doleserpeton was recovered from the Dolese Brothers Limestone Quarry in Fort Sill, Oklahoma. The genus name Doleserpeton is derived from the initial discovery site in Dolese quarry of Oklahoma and the Greek root "herp-", meaning "low or close to the ground". This transitional fossil displays primitive traits of amphibians that allowed for successful adaptation from aquatic to terrestrial environments. In many phylogenies, lissamphibians appear as the sister group of Doleserpeton.

<i>Odonterpeton</i> Extinct genus of amphibians

Odonterpeton is an extinct genus of "microsaur" from the Late Carboniferous of Ohio, containing the lone species Odonterpeton triangulare. It is known from a single partial skeleton preserving the skull, forelimbs, and the front part of the torso. The specimen was found in the abandoned Diamond Coal Mine of Linton, Ohio, a fossiliferous coal deposit dated to the late Moscovian stage, about 310 million years ago.

<i>Stanocephalosaurus</i> Extinct genus of amphibians

Stanocephalosaurus is an extinct genus of large-sized temnospondyl amphibians living through the early to mid Triassic. The etymology of its name most likely came from its long narrow skull when compared to other temnospondyls. Stanocephalosaurus lived an aquatic lifestyle, with some species even living in salt lakes. There are currently three recognized species and another that needs further material to establish its legitimacy. The three known species are Stanocephalosaurus pronus from the Middle Triassic in Tanzania, Stanocephalosaurus amenasensis from the Lower Triassic in Algeria, and Stanocephalosaurus birdi, from the middle Triassic in Arizona. Stanocephalosaurus rajareddyi from the Middle Triassic in central India needs further evidence in order to establish its relationship among other Stanocephalosaurs. Like other temnospondyls, Stanocephalosaurus was an aquatic carnivore. Evidence of multiple species discovered in a wide range of localities proves that Stanocephalosaurus were present all across Pangea throughout the early to mid Triassic.

Australothyris is an extinct genus of basal procolophonomorph parareptile known from the Middle Permian of Tapinocephalus Assemblage Zone, South Africa. The type and only known species is Australothyris smithi. As the most basal member of Procolophonomorpha, Australothyris helped to contextualize the origin of this major parareptile subgroup. It has been used to support the hypotheses that procolophonomorphs originated in Gondwana and ancestrally possess temporal fenestrae, due to its large and fully enclosed temporal fenestra and South African heritage. It also possessed several unique features, including a high tooth number, long postfrontal, small interpterygoid vacuity, and a specialized interaction between the stapes and quadrate.

<i>Adamanterpeton</i> Extinct genus of amphibians

Adamanterpeton is a genus of Edopoid Temnospondyl within the family Cochleosauridae. The type species A. ohioensis was named in 1998 and is currently the only known species within this genus. Adamanterpeton is rare in the Linton vertebrate assemblage, with other amphibians like Sauropleura, Ophiderpeton, and Colosteus being more common. Unlike other Linton vertebrates, Adamanterpeton may have been adapted to a terrestrial lifestyle.

Arachana is an extinct genus of rhinesuchid-like temnospondyl known from the Early Triassic Buena Vista Formation of northeastern Uruguay. Arachana was first named by Graciela Piñeiro, Alejandro Ramos and Claudia Marsicano in 2012 and the type species is A. nigra. It shares characteristics with both rhinesuchids and lydekkerinids, making it a transitional form between basal and more advanced stereospondyls.

<span class="mw-page-title-main">Edopoidea</span> Extinct superfamily of amphibians

Edopoidea is a clade of primitive temnospondyl amphibians including the genus Edops and the family Cochleosauridae. Edopoids are known from the Late Carboniferous and Early Permian of North America and Europe, and the Late Permian of Africa. They are among the most basal temnospondyls, and possess a number of primitive features that were lost in later members of the group.

<i>Bunostegos</i> Genus of reptiles (fossil)

Bunostegos is an extinct genus of pareiasaur parareptile from the Late Permian of the Agadez Region in Niger. The type species, Bunostegos akokanensis, was named from the Moradi Formation in 2003. It was a cow-sized animal with a distinctive skull that had large bony knobs, similar in form to those of other pareiasaurs but far larger. The species appears to have lived in a desert in the centre of the supercontinent of Pangaea.

References

  1. 1 2 Sidor, C. A.; O'Keefe, F. R.; Damiani, R.; Steyer, J. S.; Smith, R. M. H.; Larsson, H. C. E.; Sereno, P. C.; Ide, O.; Maga, A. (2005). "Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea". Nature . 434 (7035): 886–889. doi:10.1038/nature03393. PMID   15829962.
  2. 1 2 3 4 5 6 7 Damiani, R.; Sidor, C. A.; Steyer, J. S.; Smith, R. M. H.; Larsson, H. C. E.; Maga, A.; Ide, O. (2006). "The vertebrate fauna of the Upper Permian of Niger. V. The primitive temnospondyl Saharastega moradiensis". Journal of Vertebrate Paleontology . 26 (3): 559–572. doi:10.1080/02724634.2006.10010015.
  3. Chapter 6: "Walking with early tetrapods: evolution of the postcranial skeleton and the phylogenetic affinities of the Temnospondyli (Vertebrata: Tetrapoda)." In: Kat Pawley (2006). "The postcranial skeleton of temnospondyls (Tetrapoda: temnospondyli)." PhD Thesis. La Trobe University, Melbourne.
  4. Naish, Darren (9 July 2007). "Temnospondyls the early years (part II)". ScienceBlogs.
  5. McHugh, Julia Beth (2012). Temnospondyl ontogeny and phylogeny, a window into terrestrial ecosystems during the Permian-Triassic mass extinction (PhD dissertation). University of Iowa. doi: 10.17077/etd.bckqmevc .
  6. Schoch, R. R. (2013). "The evolution of major temnospondyl clades: An inclusive phylogenetic analysis". Journal of Systematic Palaeontology. 11 (6): 673–705. doi:10.1080/14772019.2012.699006.
  7. 1 2 Marjanović, David; Laurin, Michel (2019-01-04). "Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix". PeerJ. 6: e5565. doi: 10.7717/peerj.5565 . ISSN   2167-8359. PMC   6322490 . PMID   30631641.