Uniform tiling symmetry mutations

Last updated
Example *n32 symmetry mutations
Spherical tilings (n = 3..5)
Uniform tiling 332-t01-1-.png
*332
Uniform tiling 432-t01.png
*432
Uniform tiling 532-t01.png
*532
Euclidean plane tiling (n = 6)
Uniform tiling 63-t01.png
*632
Hyperbolic plane tilings (n = 7...∞)
Truncated heptagonal tiling.svg
*732
H2-8-3-trunc-dual.svg
*832
H2 tiling 23i-3.png
... *∞32

In geometry, a symmetry mutation is a mapping of fundamental domains between two symmetry groups. [1] They are compactly expressed in orbifold notation. These mutations can occur from spherical tilings to Euclidean tilings to hyperbolic tilings. Hyperbolic tilings can also be divided between compact, paracompact and divergent cases.

Contents

The uniform tilings are the simplest application of these mutations, although more complex patterns can be expressed within a fundamental domain.

This article expressed progressive sequences of uniform tilings within symmetry families.

Mutations of orbifolds

Orbifolds with the same structure can be mutated between different symmetry classes, including across curvature domains from spherical, to Euclidean to hyperbolic. This table shows mutation classes. [1] This table is not complete for possible hyperbolic orbifolds.

OrbifoldSphericalEuclideanHyperbolic
o-o-
pp22, 33 ...∞∞-
*pp*22, *33 ...*∞∞-
p*2*, 3* ...∞*-
2×, 3× ...∞×
**-**-
--
××-××-
ppp222333444 ...
pp*-22*33* ...
pp×-22×33×, 44× ...
pqq222, 322 ... , 233244255 ..., 433 ...
pqr234, 235236237 ..., 245 ...
pq*--23*, 24* ...
pq×--23×, 24× ...
p*q2*2, 2*3 ...3*3, 4*25*2 5*3 ..., 4*3, 4*4 ..., 3*4, 3*5 ...
*p*--*2* ...
*p×--*2× ...
pppp-22223333 ...
pppq--2223...
ppqq--2233
pp*p--22*2 ...
p*qr-2*223*22 ..., 2*32 ...
*ppp*222*333*444 ...
*pqq*p22, *233*244*255 ..., *344...
*pqr*234, *235*236*237..., *245..., *345 ...
p*ppp--2*222
*pqrs-*2222*2223...
*ppppp--*22222 ...
...

*n22 symmetry

Regular tilings

Family of regular hosohedra · *n22 symmetry mutations of regular hosohedral tilings: nn
SpaceSphericalEuclidean
Tiling name(Monogonal)
Henagonal hosohedron
Digonal hosohedron (Triangular)
Trigonal hosohedron
(Tetragonal)
Square hosohedron
Pentagonal hosohedron Hexagonal hosohedron Heptagonal hosohedronOctagonal hosohedronEnneagonal hosohedronDecagonal hosohedronHendecagonal hosohedronDodecagonal hosohedron... Apeirogonal hosohedron
Tiling image Spherical henagonal hosohedron.svg Spherical digonal hosohedron.svg Spherical trigonal hosohedron.svg Spherical square hosohedron.svg Spherical pentagonal hosohedron.svg Spherical hexagonal hosohedron.svg Spherical heptagonal hosohedron.svg Spherical octagonal hosohedron.svg Spherical enneagonal hosohedron.svg Spherical decagonal hosohedron.svg Spherical hendecagonal hosohedron.svg Spherical dodecagonal hosohedron.svg ... Apeirogonal hosohedron.svg
Schläfli symbol {2,1}{2,2}{2,3}{2,4}{2,5}{2,6}{2,7}{2,8}{2,9}{2,10}{2,11}{2,12}...{2,∞}
Coxeter diagram CDel node 1.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 6.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 7.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 8.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 9.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 10.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 11.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 12.pngCDel node.png...CDel node 1.pngCDel 2x.pngCDel node.pngCDel infin.pngCDel node.png
Faces and edges123456789101112...
Vertices2...2
Vertex config. 22.223242526272829210211212...2
Family of regular dihedra · *n22 symmetry mutations of regular dihedral tilings: nn
SpaceSphericalEuclidean
Tiling name(Hengonal)
Monogonal dihedron
Digonal dihedron (Triangular)
Trigonal dihedron
(Tetragonal)
Square dihedron
Pentagonal dihedron Hexagonal dihedron ... Apeirogonal dihedron
Tiling image Monogonal dihedron.svg Digonal dihedron.svg Trigonal dihedron.svg Tetragonal dihedron.svg Pentagonal dihedron.svg Hexagonal dihedron.svg ... Apeirogonal tiling.svg
Schläfli symbol {1,2}{2,2}{3,2}{4,2}{5,2}{6,2}...{∞,2}
Coxeter diagram CDel node 1.pngCDel 1x.pngCDel node.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 2x.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 2x.pngCDel node.png...CDel node 1.pngCDel infin.pngCDel node.pngCDel 2x.pngCDel node.png
Faces2 {1} 2 {2} 2 {3} 2 {4} 2 {5} 2 {6} ...2 {∞}
Edges and vertices123456...
Vertex config. 1.12.23.34.45.56.6...∞.∞

Prism tilings

*n22 symmetry mutations of uniform prisms: n.4.4
SpaceSphericalEuclidean
Tiling Spherical triangular prism.svg Spherical square prism.svg Spherical pentagonal prism.svg Spherical hexagonal prism.svg Spherical heptagonal prism.svg Spherical octagonal prism.svg Spherical decagonal prism.svg Infinite prism.svg
Config. 3.4.4 4.4.4 5.4.4 6.4.4 7.4.4 8.4.4 9.4.4 10.4.4 11.4.4 12.4.4 ...∞.4.4

Antiprism tilings

*n22 symmetry mutations of antiprism tilings: Vn.3.3.3
SpaceSphericalEuclidean
Tiling Spherical digonal antiprism.svg Spherical trigonal antiprism.svg Spherical square antiprism.svg Spherical pentagonal antiprism.svg Spherical hexagonal antiprism.svg Spherical heptagonal antiprism.svg Spherical octagonal antiprism.svg Infinite antiprism.svg
Config. 2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3.3.3 ....3.3.3

*n32 symmetry

Regular tilings

*n32 symmetry mutation of regular tilings: {3,n}
SphericalEuclid.Compact hyper.Paraco.Noncompact hyperbolic
Trigonal dihedron.svg Uniform tiling 332-t2.png Uniform tiling 432-t2.png Uniform tiling 532-t2.png Uniform polyhedron-63-t2.png Order-7 triangular tiling.svg H2-8-3-primal.svg H2 tiling 23i-4.png H2 tiling 23j12-4.png H2 tiling 23j9-4.png H2 tiling 23j6-4.png H2 tiling 23j3-4.png
3.3 33 34 35 36 37 38 3 312i39i36i33i
*n32 symmetry mutation of regular tilings: {n,3}
Spherical Euclidean Compact hyperb.Paraco.Noncompact hyperbolic
Spherical trigonal hosohedron.svg Uniform tiling 332-t0.png Uniform tiling 432-t0.png Uniform tiling 532-t0.png Uniform polyhedron-63-t0.png Heptagonal tiling.svg H2-8-3-dual.svg H2-I-3-dual.svg H2 tiling 23j12-1.png H2 tiling 23j9-1.png H2 tiling 23j6-1.png H2 tiling 23j3-1.png
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3}{9i,3}{6i,3}{3i,3}

Truncated tilings

*n32 symmetry mutation of truncated tilings: t{n,3}
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3][9i,3][6i,3]
Truncated
figures
Spherical triangular prism.svg Uniform tiling 332-t01-1-.png Uniform tiling 432-t01.png Uniform tiling 532-t01.png Uniform tiling 63-t01.svg Truncated heptagonal tiling.svg H2-8-3-trunc-dual.svg H2 tiling 23i-3.png H2 tiling 23j12-3.png H2 tiling 23j9-3.png H2 tiling 23j6-3.png
Symbol t{2,3} t{3,3} t{4,3} t{5,3} t{6,3} t{7,3} t{8,3} t{,3} t{12i,3}t{9i,3}t{6i,3}
Triakis
figures
Spherical trigonal bipyramid.svg Spherical triakis tetrahedron.svg Spherical triakis octahedron.svg Spherical triakis icosahedron.svg Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Order-7 triakis triangular tiling.svg H2-8-3-kis-primal.svg Ord-infin triakis triang til.png
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16V3.∞.∞
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. CompactParac.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3][9i,3][6i,3]
Truncated
figures
Hexagonal dihedron.svg Uniform tiling 332-t12.png Uniform tiling 432-t12.png Uniform tiling 532-t12.png Uniform tiling 63-t12.svg Truncated order-7 triangular tiling.svg H2-8-3-trunc-primal.svg H2 tiling 23i-6.png H2 tiling 23j12-6.png H2 tiling 23j9-6.png H2 tiling 23j-6.png
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 .6.6 12i.6.69i.6.66i.6.6
n-kis
figures
Hexagonal Hosohedron.svg Spherical triakis tetrahedron.svg Spherical tetrakis hexahedron.svg Spherical pentakis dodecahedron.png Uniform tiling 63-t2.svg Heptakis heptagonal tiling.svg H2-8-3-kis-dual.svg H2checkers 33i.png
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6V8.6.6V.6.6V12i.6.6V9i.6.6V6i.6.6

Quasiregular tilings

Quasiregular tilings: (3.n)2
Sym.
*n32
[n,3]
Spherical Euclid.Compact hyperb.Paraco.Noncompact hyperbolic
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
 
*832
[8,3]...
 
*32
[,3]
 
[12i,3][9i,3][6i,3]
Figure
Quasiregular fundamental domain.png
Uniform tiling 332-t1-1-.png Uniform tiling 432-t1.png Uniform tiling 532-t1.png Uniform tiling 63-t1.svg Triheptagonal tiling.svg H2-8-3-rectified.svg H2 tiling 23i-2.png H2 tiling 23j12-2.png H2 tiling 23j9-2.png H2 tiling 23j6-2.png
Figure
Half quasiregular fundamental domain.png
Uniform tiling 332-t02.png Uniform tiling 333-t12.png H2 tiling 334-3.png H2 tiling 33i-3.png
Vertex (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.)2 (3.12i)2(3.9i)2(3.6i)2
Schläfli r{3,3}r{3,4}r{3,5}r{3,6}r{3,7}r{3,8}r{3,}r{3,12i}r{3,9i}r{3,6i}
Coxeter
CDel node.pngCDel n.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel labelp.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel ultra.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel label4.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
Dual uniform figures
Dual
conf.
Uniform tiling 432-t0.png
V(3.3)2
Spherical rhombic dodecahedron.png
V(3.4)2
Spherical rhombic triacontahedron.png
V(3.5)2
Rhombic star tiling.png
V(3.6)2
7-3 rhombille tiling.svg
V(3.7)2
H2-8-3-rhombic.svg
V(3.8)2
Ord3infin qreg rhombic til.png
V(3.)2
Symmetry mutations of dual quasiregular tilings: V(3.n)2
*n32 Spherical EuclideanHyperbolic
*332*432*532*632*732*832...*32
Tiling Uniform tiling 432-t0.png Spherical rhombic dodecahedron.png Spherical rhombic triacontahedron.png Rhombic star tiling.png 7-3 rhombille tiling.svg H2-8-3-rhombic.svg Ord3infin qreg rhombic til.png
Conf. V(3.3)2 V(3.4)2 V(3.5)2 V(3.6)2 V(3.7)2 V(3.8)2 V(3.)2

Expanded tilings

*n32 symmetry mutation of expanded tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
Figure Spherical triangular prism.svg Uniform tiling 332-t02.png Uniform tiling 432-t02.png Uniform tiling 532-t02.png Uniform polyhedron-63-t02.png Rhombitriheptagonal tiling.svg H2-8-3-cantellated.svg H2 tiling 23i-5.png H2 tiling 23j12-5.png H2 tiling 23j9-5.png H2 tiling 23j6-5.png
Config. 3.4.2.4 3.4.3.4 3.4.4.4 3.4.5.4 3.4.6.4 3.4.7.4 3.4.8.4 3.4..4 3.4.12i.43.4.9i.43.4.6i.4
*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.
Spherical trigonal bipyramid.svg
V3.4.2.4
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal tiling.svg
V3.4.7.4
H2-8-3-deltoidal.svg
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4..4

Omnitruncated tilings

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6. 4.6.24i4.6.18i4.6.12i4.6.6i
Duals Spherical hexagonal bipyramid.svg Spherical tetrakis hexahedron.svg Spherical disdyakis dodecahedron.svg Spherical disdyakis triacontahedron.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.V4.6.24iV4.6.18iV4.6.12iV4.6.6i

Snub tilings

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolicParacomp.
23233243253263273283232
Snub
figures
Spherical trigonal antiprism.svg Spherical snub tetrahedron.png Spherical snub cube.png Spherical snub dodecahedron.png Uniform tiling 63-snub.svg Snub triheptagonal tiling.svg H2-8-3-snub.svg Uniform tiling i32-snub.png
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Gyro
figures
Uniform tiling 432-t0.png Uniform tiling 532-t0.png Spherical pentagonal icositetrahedron.svg Spherical pentagonal hexecontahedron.png Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg 7-3 floret pentagonal tiling.svg H2-8-3-floret.svg Order-3-infinite floret pentagonal tiling.png
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7V3.3.3.3.8V3.3.3.3.

*n42 symmetry

Regular tilings

*n42 symmetry mutation of regular tilings: {4,n}
SphericalEuclideanCompact hyperbolicParacompact
Uniform tiling 432-t0.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2-5-4-primal.svg
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 247-4.png
{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 248-4.png
{4,8}...
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 24i-4.png
{4,}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
*n42 symmetry mutation of regular tilings: {n,4}
SphericalEuclideanHyperbolic tilings
Spherical square hosohedron.svg Spherical square bipyramid.svg Uniform tiling 44-t0.svg H2-5-4-dual.svg H2 tiling 246-1.png H2 tiling 247-1.png H2 tiling 248-1.png H2 tiling 24i-1.png
24 34 44 54 64 74 84 ...4

Quasiregular tilings

*n42 symmetry mutations of quasiregular tilings: (4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolicParacompactNoncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[ni,4]
Figures Uniform tiling 432-t1.png Uniform tiling 44-t1.png H2-5-4-rectified.svg H2 tiling 246-2.png H2 tiling 247-2.png H2 tiling 248-2.png H2 tiling 24i-2.png
Config. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.)2 (4.ni)2
*n42 symmetry mutations of quasiregular dual tilings: V(4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolicParacompactNoncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[iπ/λ,4]
Tiling
 
Conf.
Spherical rhombic dodecahedron.png
V4.3.4.3
Uniform tiling 44-t0.svg
V4.4.4.4
H2-5-4-rhombic.svg
V4.5.4.5
Ord64 qreg rhombic til.png
V4.6.4.6
Ord74 qreg rhombic til.png
V4.7.4.7
Ord84 qreg rhombic til.png
V4.8.4.8
Ord4infin qreg rhombic til.png
V4..4.
V4..4.

Truncated tilings

*n42 symmetry mutation of truncated tilings: 4.2n.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolicParacomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Spherical square prism.svg Uniform tiling 432-t12.png Uniform tiling 44-t01.png H2-5-4-trunc-dual.svg H2 tiling 246-3.png H2 tiling 247-3.png H2 tiling 248-3.png H2 tiling 24i-3.png
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4..
n-kis
figures
Spherical square bipyramid.svg Spherical tetrakis hexahedron.svg 1-uniform 2 dual.svg H2-5-4-kis-primal.svg Order-6 tetrakis square tiling.png Hyperbolic domains 772.png Order-8 tetrakis square tiling.png H2checkers 2ii.png
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10V4.12.12V4.14.14V4.16.16V4..
*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolicParacompact
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Octagonal dihedron.svg Uniform tiling 432-t01.png Uniform tiling 44-t12.svg H2-5-4-trunc-primal.svg H2 tiling 246-6.png H2 tiling 247-6.png H2 tiling 248-6.png H2 tiling 24i-6.png
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 .8.8
n-kis
figures
Spherical octagonal hosohedron.svg Spherical triakis octahedron.svg 1-uniform 2 dual.svg H2-5-4-kis-dual.svg Order4 hexakis hexagonal til.png Order4 heptakis heptagonal til.png H2-8-3-primal.svg Ord4 apeirokis apeirogonal til.png
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8V6.8.8V7.8.8V8.8.8V.8.8

Expanded tilings

*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolicParacomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*42
[,4]
Expanded
figures
Uniform tiling 432-t02.png Uniform tiling 44-t02.png H2-5-4-cantellated.svg Uniform tiling 64-t02.png Uniform tiling 74-t02.png Uniform tiling 84-t02.png H2 tiling 24i-5.png
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 .4.4.4
Rhombic
figures
config.
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Uniform tiling 44-t0.svg
V4.4.4.4
H2-5-4-deltoidal.svg
V5.4.4.4
Deltoidal tetrahexagonal til.png
V6.4.4.4
Deltoidal tetraheptagonal til.png
V7.4.4.4
Deltoidal tetraoctagonal til.png
V8.4.4.4
Deltoidal tetraapeirogonal tiling.png
V.4.4.4

Omnitruncated tilings

*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolicParacomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Omnitruncated
figure
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2-5-4-omnitruncated.svg
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.
Omnitruncated
duals
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.svg
V4.8.6
1-uniform 2 dual.svg
V4.8.8
H2-5-4-kisrhombille.svg
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.

Snub tilings

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolicParacomp.
24234244254264274284242
Snub
figures
Spherical square antiprism.svg Spherical snub cube.png Uniform tiling 44-snub.png H2-5-4-snub.svg Uniform tiling 64-snub.png Uniform tiling 74-snub.png Uniform tiling 84-snub.png Uniform tiling i42-snub.png
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.
Gyro
figures
Spherical tetragonal trapezohedron.svg Spherical pentagonal icositetrahedron.svg Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg H2-5-4-floret.svg
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6V3.3.4.3.7V3.3.4.3.8V3.3.4.3.

*n52 symmetry

Regular tilings

*n52 symmetry mutation of truncated tilings: 5n
Sphere Hyperbolic plane
Uniform tiling 532-t0.png
{5,3}
H2-5-4-dual.svg
{5,4}
H2 tiling 255-1.png
{5,5}
H2 tiling 256-1.png
{5,6}
H2 tiling 257-1.png
{5,7}
H2 tiling 258-1.png
{5,8}
H2 tiling 25i-1.png
...{5,∞}

*n62 symmetry

Regular tilings

*n62 symmetry mutation of regular tilings: {6,n}
SphericalEuclideanHyperbolic tilings
Hexagonal dihedron.svg
{6,2}
Uniform tiling 63-t0.svg
{6,3}
H2 tiling 246-1.png
{6,4}
H2 tiling 256-1.png
{6,5}
H2 tiling 266-4.png
{6,6}
H2 tiling 267-4.png
{6,7}
H2 tiling 268-4.png
{6,8}
... H2 tiling 26i-4.png
{6,∞}

*n82 symmetry

Regular tilings

n82 symmetry mutations of regular tilings: 8n
SpaceSphericalCompact hyperbolicParacompact
Tiling H2-8-3-dual.svg H2 tiling 248-1.png H2 tiling 258-1.png H2 tiling 268-1.png H2 tiling 278-1.png H2 tiling 288-4.png H2 tiling 28i-4.png
Config. 8.8 83 84 85 86 87 88 ...8

Related Research Articles

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.

<span class="mw-page-title-main">Truncated trihexagonal tiling</span>

In geometry, the truncated trihexagonal tiling is one of eight semiregular tilings of the Euclidean plane. There are one square, one hexagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{3,6}.

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied to get 180 degrees. An unlabeled branch implicitly represents order-3, and each pair of nodes that is not connected by a branch at all represents a pair of mirrors at order-2.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.

<span class="mw-page-title-main">Rhombitetrahexagonal tiling</span>

In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.

<span class="mw-page-title-main">Truncated order-4 hexagonal tiling</span>

In geometry, the truncated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,4}. A secondary construction tr{6,6} is called a truncated hexahexagonal tiling with two colors of dodecagons.

<span class="mw-page-title-main">Truncated order-6 square tiling</span>

In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.

<span class="mw-page-title-main">Order-4 octagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,4}. Its checkerboard coloring can be called a octaoctagonal tiling, and Schläfli symbol of r{8,8}.

<span class="mw-page-title-main">Tetraoctagonal tiling</span>

In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.

<span class="mw-page-title-main">Order-8 square tiling</span>

In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.

<span class="mw-page-title-main">Rhombitetraoctagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the rhombitetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,4}. It can be seen as constructed as a rectified tetraoctagonal tiling, r{8,4}, as well as an expanded order-4 octagonal tiling or expanded order-8 square tiling.

<span class="mw-page-title-main">Truncated order-8 octagonal tiling</span>

In geometry, the truncated order-8 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,8}.

<span class="mw-page-title-main">Order-4 apeirogonal tiling</span>

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

<span class="mw-page-title-main">Truncated infinite-order square tiling</span>

In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,∞}.

<span class="mw-page-title-main">Rhombitetraapeirogonal tiling</span> Uniform tiling of the hyperbolic plane

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

<span class="mw-page-title-main">Truncated order-8 hexagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the truncated order-8 hexagonal tiling is a semiregular tiling of the hyperbolic plane. It has Schläfli symbol of t{6,8}.

In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

References

Sources