Spherical tilings (n = 3..5) | ||
---|---|---|
*332 | *432 | *532 |
Euclidean plane tiling (n = 6) | ||
*632 | ||
Hyperbolic plane tilings (n = 7...∞) | ||
*732 | *832 | ... *∞32 |
In geometry, a symmetry mutation is a mapping of fundamental domains between two symmetry groups. [1] They are compactly expressed in orbifold notation. These mutations can occur from spherical tilings to Euclidean tilings to hyperbolic tilings. Hyperbolic tilings can also be divided between compact, paracompact and divergent cases.
The uniform tilings are the simplest application of these mutations, although more complex patterns can be expressed within a fundamental domain.
This article expressed progressive sequences of uniform tilings within symmetry families.
Orbifolds with the same structure can be mutated between different symmetry classes, including across curvature domains from spherical, to Euclidean to hyperbolic. This table shows mutation classes. [1] This table is not complete for possible hyperbolic orbifolds.
Orbifold | Spherical | Euclidean | Hyperbolic |
---|---|---|---|
o | - | o | - |
pp | 22, 33 ... | ∞∞ | - |
*pp | *22, *33 ... | *∞∞ | - |
p* | 2*, 3* ... | ∞* | - |
p× | 2×, 3× ... | ∞× | |
** | - | ** | - |
*× | - | *× | - |
×× | - | ×× | - |
ppp | 222 | 333 | 444 ... |
pp* | - | 22* | 33* ... |
pp× | - | 22× | 33×, 44× ... |
pqq | 222, 322 ... , 233 | 244 | 255 ..., 433 ... |
pqr | 234, 235 | 236 | 237 ..., 245 ... |
pq* | - | - | 23*, 24* ... |
pq× | - | - | 23×, 24× ... |
p*q | 2*2, 2*3 ... | 3*3, 4*2 | 5*2 5*3 ..., 4*3, 4*4 ..., 3*4, 3*5 ... |
*p* | - | - | *2* ... |
*p× | - | - | *2× ... |
pppp | - | 2222 | 3333 ... |
pppq | - | - | 2223... |
ppqq | - | - | 2233 |
pp*p | - | - | 22*2 ... |
p*qr | - | 2*22 | 3*22 ..., 2*32 ... |
*ppp | *222 | *333 | *444 ... |
*pqq | *p22, *233 | *244 | *255 ..., *344... |
*pqr | *234, *235 | *236 | *237..., *245..., *345 ... |
p*ppp | - | - | 2*222 |
*pqrs | - | *2222 | *2223... |
*ppppp | - | - | *22222 ... |
... |
Space | Spherical | Euclidean | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tiling name | (Monogonal) Henagonal hosohedron | Digonal hosohedron | (Triangular) Trigonal hosohedron | (Tetragonal) Square hosohedron | Pentagonal hosohedron | Hexagonal hosohedron | Heptagonal hosohedron | Octagonal hosohedron | Enneagonal hosohedron | Decagonal hosohedron | Hendecagonal hosohedron | Dodecagonal hosohedron | ... | Apeirogonal hosohedron |
Tiling image | ... | |||||||||||||
Schläfli symbol | {2,1} | {2,2} | {2,3} | {2,4} | {2,5} | {2,6} | {2,7} | {2,8} | {2,9} | {2,10} | {2,11} | {2,12} | ... | {2,∞} |
Coxeter diagram | ... | |||||||||||||
Faces and edges | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ... | ∞ |
Vertices | 2 | ... | 2 | |||||||||||
Vertex config. | 2 | 2.2 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 210 | 211 | 212 | ... | 2∞ |
Space | Spherical | Euclidean | ||||||
---|---|---|---|---|---|---|---|---|
Tiling name | (Hengonal) Monogonal dihedron | Digonal dihedron | (Triangular) Trigonal dihedron | (Tetragonal) Square dihedron | Pentagonal dihedron | Hexagonal dihedron | ... | Apeirogonal dihedron |
Tiling image | ... | |||||||
Schläfli symbol | {1,2} | {2,2} | {3,2} | {4,2} | {5,2} | {6,2} | ... | {∞,2} |
Coxeter diagram | ... | |||||||
Faces | 2 {1} | 2 {2} | 2 {3} | 2 {4} | 2 {5} | 2 {6} | ... | 2 {∞} |
Edges and vertices | 1 | 2 | 3 | 4 | 5 | 6 | ... | ∞ |
Vertex config. | 1.1 | 2.2 | 3.3 | 4.4 | 5.5 | 6.6 | ... | ∞.∞ |
Space | Spherical | Euclidean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tiling | |||||||||||
Config. | 3.4.4 | 4.4.4 | 5.4.4 | 6.4.4 | 7.4.4 | 8.4.4 | 9.4.4 | 10.4.4 | 11.4.4 | 12.4.4 | ...∞.4.4 |
Space | Spherical | Euclidean | ||||||
---|---|---|---|---|---|---|---|---|
Tiling | ||||||||
Config. | 2.3.3.3 | 3.3.3.3 | 4.3.3.3 | 5.3.3.3 | 6.3.3.3 | 7.3.3.3 | 8.3.3.3 | ...∞.3.3.3 |
*n32 symmetry mutation of regular tilings: {3,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclid. | Compact hyper. | Paraco. | Noncompact hyperbolic | |||||||
3.3 | 33 | 34 | 35 | 36 | 37 | 38 | 3∞ | 312i | 39i | 36i | 33i |
*n32 symmetry mutation of regular tilings: {n,3} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
{2,3} | {3,3} | {4,3} | {5,3} | {6,3} | {7,3} | {8,3} | {∞,3} | {12i,3} | {9i,3} | {6i,3} | {3i,3} |
*n32 symmetry mutation of truncated tilings: t{n,3} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n32 [n,3] | Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | ||||||
*232 [2,3] | *332 [3,3] | *432 [4,3] | *532 [5,3] | *632 [6,3] | *732 [7,3] | *832 [8,3]... | *∞32 [∞,3] | [12i,3] | [9i,3] | [6i,3] | |
Truncated figures | |||||||||||
Symbol | t{2,3} | t{3,3} | t{4,3} | t{5,3} | t{6,3} | t{7,3} | t{8,3} | t{∞,3} | t{12i,3} | t{9i,3} | t{6i,3} |
Triakis figures | |||||||||||
Config. | V3.4.4 | V3.6.6 | V3.8.8 | V3.10.10 | V3.12.12 | V3.14.14 | V3.16.16 | V3.∞.∞ |
*n32 symmetry mutation of truncated tilings: n.6.6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sym. *n42 [n,3] | Spherical | Euclid. | Compact | Parac. | Noncompact hyperbolic | |||||||
*232 [2,3] | *332 [3,3] | *432 [4,3] | *532 [5,3] | *632 [6,3] | *732 [7,3] | *832 [8,3]... | *∞32 [∞,3] | [12i,3] | [9i,3] | [6i,3] | ||
Truncated figures | ||||||||||||
Config. | 2.6.6 | 3.6.6 | 4.6.6 | 5.6.6 | 6.6.6 | 7.6.6 | 8.6.6 | ∞.6.6 | 12i.6.6 | 9i.6.6 | 6i.6.6 | |
n-kis figures | ||||||||||||
Config. | V2.6.6 | V3.6.6 | V4.6.6 | V5.6.6 | V6.6.6 | V7.6.6 | V8.6.6 | V∞.6.6 | V12i.6.6 | V9i.6.6 | V6i.6.6 |
Quasiregular tilings: (3.n)2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sym. *n32 [n,3] | Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
*332 [3,3] Td | *432 [4,3] Oh | *532 [5,3] Ih | *632 [6,3] p6m | *732 [7,3] | *832 [8,3]... | *∞32 [∞,3] | [12i,3] | [9i,3] | [6i,3] | |||
Figure | ||||||||||||
Figure | ||||||||||||
Vertex | (3.3)2 | (3.4)2 | (3.5)2 | (3.6)2 | (3.7)2 | (3.8)2 | (3.∞)2 | (3.12i)2 | (3.9i)2 | (3.6i)2 | ||
Schläfli | r{3,3} | r{3,4} | r{3,5} | r{3,6} | r{3,7} | r{3,8} | r{3,∞} | r{3,12i} | r{3,9i} | r{3,6i} | ||
Coxeter | ||||||||||||
Dual uniform figures | ||||||||||||
Dual conf. | V(3.3)2 | V(3.4)2 | V(3.5)2 | V(3.6)2 | V(3.7)2 | V(3.8)2 | V(3.∞)2 |
Symmetry mutations of dual quasiregular tilings: V(3.n)2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
*n32 | Spherical | Euclidean | Hyperbolic | ||||||||
*332 | *432 | *532 | *632 | *732 | *832... | *∞32 | |||||
Tiling | |||||||||||
Conf. | V(3.3)2 | V(3.4)2 | V(3.5)2 | V(3.6)2 | V(3.7)2 | V(3.8)2 | V(3.∞)2 |
*n32 symmetry mutation of expanded tilings: 3.4.n.4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n32 [n,3] | Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
*232 [2,3] | *332 [3,3] | *432 [4,3] | *532 [5,3] | *632 [6,3] | *732 [7,3] | *832 [8,3]... | *∞32 [∞,3] | [12i,3] | [9i,3] | [6i,3] | ||
Figure | ||||||||||||
Config. | 3.4.2.4 | 3.4.3.4 | 3.4.4.4 | 3.4.5.4 | 3.4.6.4 | 3.4.7.4 | 3.4.8.4 | 3.4.∞.4 | 3.4.12i.4 | 3.4.9i.4 | 3.4.6i.4 |
Symmetry *n32 [n,3] | Spherical | Euclid. | Compact hyperb. | Paraco. | ||||
---|---|---|---|---|---|---|---|---|
*232 [2,3] | *332 [3,3] | *432 [4,3] | *532 [5,3] | *632 [6,3] | *732 [7,3] | *832 [8,3]... | *∞32 [∞,3] | |
Figure Config. | V3.4.2.4 | V3.4.3.4 | V3.4.4.4 | V3.4.5.4 | V3.4.6.4 | V3.4.7.4 | V3.4.8.4 | V3.4.∞.4 |
*n32 symmetry mutation of omnitruncated tilings: 4.6.2n | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sym. *n32 [n,3] | Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
*232 [2,3] | *332 [3,3] | *432 [4,3] | *532 [5,3] | *632 [6,3] | *732 [7,3] | *832 [8,3] | *∞32 [∞,3] | [12i,3] | [9i,3] | [6i,3] | [3i,3] | |
Figures | ||||||||||||
Config. | 4.6.4 | 4.6.6 | 4.6.8 | 4.6.10 | 4.6.12 | 4.6.14 | 4.6.16 | 4.6.∞ | 4.6.24i | 4.6.18i | 4.6.12i | 4.6.6i |
Duals | ||||||||||||
Config. | V4.6.4 | V4.6.6 | V4.6.8 | V4.6.10 | V4.6.12 | V4.6.14 | V4.6.16 | V4.6.∞ | V4.6.24i | V4.6.18i | V4.6.12i | V4.6.6i |
n32 symmetry mutations of snub tilings: 3.3.3.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry n32 | Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
232 | 332 | 432 | 532 | 632 | 732 | 832 | ∞32 | |
Snub figures | ||||||||
Config. | 3.3.3.3.2 | 3.3.3.3.3 | 3.3.3.3.4 | 3.3.3.3.5 | 3.3.3.3.6 | 3.3.3.3.7 | 3.3.3.3.8 | 3.3.3.3.∞ |
Gyro figures | ||||||||
Config. | V3.3.3.3.2 | V3.3.3.3.3 | V3.3.3.3.4 | V3.3.3.3.5 | V3.3.3.3.6 | V3.3.3.3.7 | V3.3.3.3.8 | V3.3.3.3.∞ |
*n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
{4,3} | {4,4} | {4,5} | {4,6} | {4,7} | {4,8}... | {4,∞} |
*n42 symmetry mutation of regular tilings: {n,4} | |||||||
---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | |||||
24 | 34 | 44 | 54 | 64 | 74 | 84 | ...∞4 |
*n42 symmetry mutations of quasiregular tilings: (4.n)2 | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *4n2 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
*342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | [ni,4] | |
Figures | ||||||||
Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 |
*n42 symmetry mutations of quasiregular dual tilings: V(4.n)2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *4n2 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | ||||||
*342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | [iπ/λ,4] | ||||
Tiling Conf. | V4.3.4.3 | V4.4.4.4 | V4.5.4.5 | V4.6.4.6 | V4.7.4.7 | V4.8.4.8 | V4.∞.4.∞ | V4.∞.4.∞ |
*n42 symmetry mutation of truncated tilings: 4.2n.2n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*242 [2,4] | *342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | ||||
Truncated figures | |||||||||||
Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | |||
n-kis figures | |||||||||||
Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ |
*n42 symmetry mutation of truncated tilings: n.8.8 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
*242 [2,4] | *342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | ||||
Truncated figures | |||||||||||
Config. | 2.8.8 | 3.8.8 | 4.8.8 | 5.8.8 | 6.8.8 | 7.8.8 | 8.8.8 | ∞.8.8 | |||
n-kis figures | |||||||||||
Config. | V2.8.8 | V3.8.8 | V4.8.8 | V5.8.8 | V6.8.8 | V7.8.8 | V8.8.8 | V∞.8.8 |
*n42 symmetry mutation of expanded tilings: n.4.4.4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry [n,4], (*n42) | Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4] | *∞42 [∞,4] | |||||
Expanded figures | |||||||||||
Config. | 3.4.4.4 | 4.4.4.4 | 5.4.4.4 | 6.4.4.4 | 7.4.4.4 | 8.4.4.4 | ∞.4.4.4 | ||||
Rhombic figures config. | V3.4.4.4 | V4.4.4.4 | V5.4.4.4 | V6.4.4.4 | V7.4.4.4 | V8.4.4.4 | V∞.4.4.4 |
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
*242 [2,4] | *342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | |
Omnitruncated figure | 4.8.4 | 4.8.6 | 4.8.8 | 4.8.10 | 4.8.12 | 4.8.14 | 4.8.16 | 4.8.∞ |
Omnitruncated duals | V4.8.4 | V4.8.6 | V4.8.8 | V4.8.10 | V4.8.12 | V4.8.14 | V4.8.16 | V4.8.∞ |
4n2 symmetry mutations of snub tilings: 3.3.4.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry 4n2 | Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
Snub figures | ||||||||
Config. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.7 | 3.3.4.3.8 | 3.3.4.3.∞ |
Gyro figures | ||||||||
Config. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.∞ |
Sphere | Hyperbolic plane | |||||
---|---|---|---|---|---|---|
{5,3} | {5,4} | {5,5} | {5,6} | {5,7} | {5,8} | ...{5,∞} |
*n62 symmetry mutation of regular tilings: {6,n} | ||||||||
---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Hyperbolic tilings | ||||||
{6,2} | {6,3} | {6,4} | {6,5} | {6,6} | {6,7} | {6,8} | ... | {6,∞} |
Space | Spherical | Compact hyperbolic | Paracompact | |||||
---|---|---|---|---|---|---|---|---|
Tiling | ||||||||
Config. | 8.8 | 83 | 84 | 85 | 86 | 87 | 88 | ...8∞ |
A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.
In geometry, the truncated trihexagonal tiling is one of eight semiregular tilings of the Euclidean plane. There are one square, one hexagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{3,6}.
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied to get 180 degrees. An unlabeled branch implicitly represents order-3, and each pair of nodes that is not connected by a branch at all represents a pair of mirrors at order-2.
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.
In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.
In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.
In geometry, the truncated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,4}. A secondary construction tr{6,6} is called a truncated hexahexagonal tiling with two colors of dodecagons.
In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.
In geometry, the order-4 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,4}. Its checkerboard coloring can be called a octaoctagonal tiling, and Schläfli symbol of r{8,8}.
In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.
In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.
In geometry, the rhombitetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,4}. It can be seen as constructed as a rectified tetraoctagonal tiling, r{8,4}, as well as an expanded order-4 octagonal tiling or expanded order-8 square tiling.
In geometry, the truncated order-8 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,8}.
In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.
In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,∞}.
In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.
In geometry, the truncated order-8 hexagonal tiling is a semiregular tiling of the hyperbolic plane. It has Schläfli symbol of t{6,8}.
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.